I am trying to create a method (sum) that takes a variable number of vectors and adds them in. For educational purposes, I have written my own Vector
class, and the underlying data is stored in an instance variable named data.
My code for the @classmethod
sum works (for each of the vectors passed in, loop through each element in the data variable and add it to a result list), but it seems non-Pythonic, and wondering if there is a better way?
class Vector(object):
def __init__(self, data):
self.data = data
@classmethod
def sum(cls, *args):
result = [0 for _ in range(len(args[0].data))]
for v in args:
if len(v.data) != len(result): raise
for i, element in enumerate(v.data):
result[i] += element
return cls(result)
itertools.izip_longest
may come very handy in your situation:
a = [1, 2, 3, 4]
b = [1, 2, 3, 4, 5, 6]
c = [1, 2]
lists = (a, b, c)
result = [sum(el) for el in itertools.izip_longest(*lists, fillvalue=0)]
And here you got what you wanted:
>>> result
[3, 6, 6, 8, 5, 6]
What it does is simply zips up your lists together, by filling empty value with 0
. e.g. izip_longest(a, b)
would be [(1, 1), (2, 2), (3, 0), (4, 0)]
. Then just sums up all the values in each tuple element of the intermediate list.
So here you go step by step:
>>> lists
([1, 2, 3, 4], [1, 2, 3, 4, 5, 6], [1, 2])
>>> list(itertools.izip_longest(*lists, fillvalue=0))
[(1, 1, 1), (2, 2, 2), (3, 3, 0), (4, 4, 0), (0, 5, 0), (0, 6, 0)]
So if you run a list comprehension, summing up all sub-elements, you get your result.
Another thing that you could do (and that might be more "pythonic") would be to implement the __add__
magic method, so you can use +
and sum
directly on vectors.
class Vector(object):
def __init__(self, data):
self.data = data
def __add__(self, other):
if isinstance(other, Vector):
return Vector([s + o for s, o in zip(self.data, other.data)])
if isinstance(other, int):
return Vector([s + other for s in self.data])
raise TypeError("can not add %s to vector" % other)
def __radd__(self, other):
return self.__add__(other)
def __repr__(self):
return "Vector(%r)" % self.data
Here, I also implemented addition of Vector
and int
, adding the number on each of the Vector's data elements, and the "reverse addition" __radd__
, to make sum
work properly.
Example:
>>> v1 = Vector([1,2,3])
>>> v2 = Vector([4,5,6])
>>> v3 = Vector([7,8,9])
>>> v1 + v2 + v3
Vector([12, 15, 18])
>>> sum([v1,v2,v3])
Vector([12, 15, 18])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With