I have this simple function that partitions a list and returns an index i in the list such that elements at indices less that i are smaller than list[i] and elements at indices greater than i are bigger.
def partition(arr):
first_high = 0
pivot = len(arr) - 1
for i in range(len(arr)):
if arr[i] < arr[pivot]:
arr[first_high], arr[i] = arr[i], arr[first_high]
first_high = first_high + 1
arr[first_high], arr[pivot] = arr[pivot], arr[first_high]
return first_high
if __name__ == "__main__":
arr = [1, 5, 4, 6, 0, 3]
pivot = partition(arr)
print(pivot)
The runtime is substantially bigger with python 3.4 that python 2.7.6 on OS X:
time python3 partition.py
real 0m0.040s
user 0m0.027s
sys 0m0.010s
time python partition.py
real 0m0.031s
user 0m0.018s
sys 0m0.011s
Same thing on ubuntu 14.04 / virtual box
python3:
real 0m0.049s
user 0m0.034s
sys 0m0.015s
python:
real 0m0.044s
user 0m0.022s
sys 0m0.018s
Is python3 inherently slower that python2.7 or is there any specific optimizations to the code do make run as fast as on python2.7
Python 3.3 comes faster than Python 2.7.
maxint was dropped from Python 3, but the integer value is basically the same. The speed difference in Python 2 is thus limited to the first (2 ** 63) - 1 integers on 64-bit, (2 ** 31) - 1 integers on 32 bit systems.
Python 2.7 (last version in 2. x ) is no longer under development and in 2020 will be discontinued. Python 3 is a newer version of the Python programming language which was released in December 2008. This version was mainly released to fix problems that exist in Python 2.
As mentioned in the comments, you should be benchmarking with timeit
rather than with OS tools.
My guess is the range
function is probably performing a little slower in Python 3. In Python 2 it simply returns a list, in Python 3 it returns a range
which behave more or less like a generator. I did some benchmarking and this was the result, which may be a hint on what you're experiencing:
python -mtimeit "range(10)"
1000000 loops, best of 3: 0.474 usec per loop
python3 -mtimeit "range(10)"
1000000 loops, best of 3: 0.59 usec per loop
python -mtimeit "range(100)"
1000000 loops, best of 3: 1.1 usec per loop
python3 -mtimeit "range(100)"
1000000 loops, best of 3: 0.578 usec per loop
python -mtimeit "range(1000)"
100000 loops, best of 3: 11.6 usec per loop
python3 -mtimeit "range(1000)"
1000000 loops, best of 3: 0.66 usec per loop
As you can see, when input provided to range
is small, it tends to be fast in Python 2. If the input grows, then Python 3's range
behave better.
My suggestion: test the code for larger arrays, with a hundred or a thousand elements.
Actually, I went further and test a complete iteration through the elements. The results were totally in favor of Python 2:
python -mtimeit "for i in range(1000):pass"
10000 loops, best of 3: 31 usec per loop
python3 -mtimeit "for i in range(1000):pass"
10000 loops, best of 3: 45.3 usec per loop
python -mtimeit "for i in range(10000):pass"
1000 loops, best of 3: 330 usec per loop
python3 -mtimeit "for i in range(10000):pass"
1000 loops, best of 3: 480 usec per loop
My conclusion is that, is probably faster to iterate through a list than through a generator. Although the latter is definitely more efficient regarding memory consumption. This is a classic example of the trade off between speed and memory. Although the speed difference is not that big per se (less than miliseconds). So you should value this and what's better for your program.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With