How can I read a camera and display the images at the cameras frame rate?
I want to continuously read images from my webcam, (do some fast preprocessing) and then display the image in a window. This should run at the frame rate, that my webcam provides (29 fps). It seems like the OpenCV GUI and Tkinter GUI is too slow, to display images at such a frame rate. These are clearly the bottlenecks in my experiments. Even without the preprocessing, the images are not displayed fast enough. I am on a MacBook Pro 2018.
Here is what I tried. The webcam is always read with OpenCV:
Here is the code:
Single loop, OpenCV GUI:
import cv2
import time
def main():
cap = cv2.VideoCapture(0)
window_name = "FPS Single Loop"
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
start_time = time.time()
frames = 0
seconds_to_measure = 10
while start_time + seconds_to_measure > time.time():
success, img = cap.read()
img = img[:, ::-1] # mirror
time.sleep(0.01) # simulate some processing time
cv2.imshow(window_name, img)
cv2.waitKey(1)
frames = frames + 1
cv2.destroyAllWindows()
print(
f"Captured {frames} in {seconds_to_measure} seconds. FPS: {frames/seconds_to_measure}"
)
if __name__ == "__main__":
main()
Captured 121 in 10 seconds. FPS: 12.1
Multithreaded, opencv gui:
import logging
import time
from queue import Full, Queue
from threading import Thread, Event
import cv2
logger = logging.getLogger("VideoStream")
def setup_webcam_stream(src=0):
cap = cv2.VideoCapture(src)
width, height = (
cap.get(cv2.CAP_PROP_FRAME_WIDTH),
cap.get(cv2.CAP_PROP_FRAME_HEIGHT),
)
logger.info(f"Camera dimensions: {width, height}")
logger.info(f"Camera FPS: {cap.get(cv2.CAP_PROP_FPS)}")
grabbed, frame = cap.read() # Read once to init
if not grabbed:
raise IOError("Cannot read video stream.")
return cap
def video_stream_loop(video_stream: cv2.VideoCapture, queue: Queue, stop_event: Event):
while not stop_event.is_set():
try:
success, img = video_stream.read()
# We need a timeout here to not get stuck when no images are retrieved from the queue
queue.put(img, timeout=1)
except Full:
pass # try again with a newer frame
def processing_loop(input_queue: Queue, output_queue: Queue, stop_event: Event):
while not stop_event.is_set():
try:
img = input_queue.get()
img = img[:, ::-1] # mirror
time.sleep(0.01) # simulate some processing time
# We need a timeout here to not get stuck when no images are retrieved from the queue
output_queue.put(img, timeout=1)
except Full:
pass # try again with a newer frame
def main():
stream = setup_webcam_stream(0)
webcam_queue = Queue()
processed_queue = Queue()
stop_event = Event()
window_name = "FPS Multi Threading"
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
start_time = time.time()
frames = 0
seconds_to_measure = 10
try:
Thread(
target=video_stream_loop, args=[stream, webcam_queue, stop_event]
).start()
Thread(
target=processing_loop, args=[webcam_queue, processed_queue, stop_event]
).start()
while start_time + seconds_to_measure > time.time():
img = processed_queue.get()
cv2.imshow(window_name, img)
cv2.waitKey(1)
frames = frames + 1
finally:
stop_event.set()
cv2.destroyAllWindows()
print(
f"Captured {frames} frames in {seconds_to_measure} seconds. FPS: {frames/seconds_to_measure}"
)
print(f"Webcam queue: {webcam_queue.qsize()}")
print(f"Processed queue: {processed_queue.qsize()}")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()
INFO:VideoStream:Camera dimensions: (1280.0, 720.0)
INFO:VideoStream:Camera FPS: 29.000049
Captured 209 frames in 10 seconds. FPS: 20.9
Webcam queue: 0
Processed queue: 82
Here you can see that there are images remaining in the second queue where the images get fetched for displaying them.
When I uncomment these two lines:
cv2.imshow(window_name, img)
cv2.waitKey(1)
then the output is:
INFO:VideoStream:Camera dimensions: (1280.0, 720.0)
INFO:VideoStream:Camera FPS: 29.000049
Captured 291 frames in 10 seconds. FPS: 29.1
Webcam queue: 0
Processed queue: 0
So it is able to process all frames at the webcams speed without a GUI displaying them.
Multithreaded, Tkinter gui:
import logging
import time
import tkinter
from queue import Full, Queue, Empty
from threading import Thread, Event
import PIL
from PIL import ImageTk
import cv2
logger = logging.getLogger("VideoStream")
def setup_webcam_stream(src=0):
cap = cv2.VideoCapture(src)
width, height = cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
logger.info(f"Camera dimensions: {width, height}")
logger.info(f"Camera FPS: {cap.get(cv2.CAP_PROP_FPS)}")
grabbed, frame = cap.read() # Read once to init
if not grabbed:
raise IOError("Cannot read video stream.")
return cap, width, height
def video_stream_loop(video_stream: cv2.VideoCapture, queue: Queue, stop_event: Event):
while not stop_event.is_set():
try:
success, img = video_stream.read()
# We need a timeout here to not get stuck when no images are retrieved from the queue
queue.put(img, timeout=1)
except Full:
pass # try again with a newer frame
def processing_loop(input_queue: Queue, output_queue: Queue, stop_event: Event):
while not stop_event.is_set():
try:
img = input_queue.get()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img[:, ::-1] # mirror
time.sleep(0.01) # simulate some processing time
# We need a timeout here to not get stuck when no images are retrieved from the queue
output_queue.put(img, timeout=1)
except Full:
pass # try again with a newer frame
class App:
def __init__(self, window, window_title, image_queue: Queue, image_dimensions: tuple):
self.window = window
self.window.title(window_title)
self.image_queue = image_queue
# Create a canvas that can fit the above video source size
self.canvas = tkinter.Canvas(window, width=image_dimensions[0], height=image_dimensions[1])
self.canvas.pack()
# After it is called once, the update method will be automatically called every delay milliseconds
self.delay = 1
self.update()
self.window.mainloop()
def update(self):
try:
frame = self.image_queue.get(timeout=0.1) # Timeout to not block this method forever
self.photo = ImageTk.PhotoImage(image=PIL.Image.fromarray(frame))
self.canvas.create_image(0, 0, image=self.photo, anchor=tkinter.NW)
self.window.after(self.delay, self.update)
except Empty:
pass # try again next time
def main():
stream, width, height = setup_webcam_stream(0)
webcam_queue = Queue()
processed_queue = Queue()
stop_event = Event()
window_name = "FPS Multi Threading"
try:
Thread(target=video_stream_loop, args=[stream, webcam_queue, stop_event]).start()
Thread(target=processing_loop, args=[webcam_queue, processed_queue, stop_event]).start()
App(tkinter.Tk(), window_name, processed_queue, (width, height))
finally:
stop_event.set()
print(f"Webcam queue: {webcam_queue.qsize()}")
print(f"Processed queue: {processed_queue.qsize()}")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()
INFO:VideoStream:Camera dimensions: (1280.0, 720.0)
INFO:VideoStream:Camera FPS: 29.000049
Webcam queue: 0
Processed queue: 968
The best frame rate for live streaming should be at least 30fps for live video. While FPS is one of the most important technical aspects of online streaming, it is not as important as video quality.
On this answer I share some considerations on camera FPS VS display FPS and some code examples that demonstrates:
threading
and queue
efficiently to capture at the closest maximum fps supported by the camera;For anyone going through your issue, here is a couple of important questions that need to be answered first:
The camera fps refers to what the hardware of the camera is capable of. For instance, ffmpeg tells that at 640x480 my camera can return 15 fps minimum and 30 at maximum, among other formats:
ffmpeg -list_devices true -f dshow -i dummy
ffmpeg -f dshow -list_options true -i video="HP HD Camera"
[dshow @ 00000220181cc600] vcodec=mjpeg min s=640x480 fps=15 max s=640x480 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=320x180 fps=15 max s=320x180 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=320x240 fps=15 max s=320x240 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=424x240 fps=15 max s=424x240 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=640x360 fps=15 max s=640x360 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=848x480 fps=15 max s=848x480 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=960x540 fps=15 max s=960x540 fps=30
[dshow @ 00000220181cc600] vcodec=mjpeg min s=1280x720 fps=15 max s=1280x720 fps=30
The important realization here is that despite being able to capture 30 fps internally, there is NO guarantee that an application will be able to pull those 30 frames from the camera in a second. The reasons behind this are clarified on the following sections.
The display fps refers to how many images can be draw in a window per second. This number is not limited by the camera at all and its usually much much higher than the camera fps. As you'll see later, its possible to create and application that pulls 29 images per second from the camera and draws them more than 300 times a second. That means that the same image from the camera is drawn multiple times in a window before the next frame is pulled from the camera.
The following application simply demonstrates how to print the default settings used by the camera (size, fps) and how to retrieve frames from it, display it in a window and compute the amount of FPS being rendered:
import numpy as np
import cv2
import datetime
def main():
# create display window
cv2.namedWindow("webcam", cv2.WINDOW_NORMAL)
# initialize webcam capture object
cap = cv2.VideoCapture(0)
# retrieve properties of the capture object
cap_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
cap_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
cap_fps = cap.get(cv2.CAP_PROP_FPS)
fps_sleep = int(1000 / cap_fps)
print('* Capture width:', cap_width)
print('* Capture height:', cap_height)
print('* Capture FPS:', cap_fps, 'ideal wait time between frames:', fps_sleep, 'ms')
# initialize time and frame count variables
last_time = datetime.datetime.now()
frames = 0
# main loop: retrieves and displays a frame from the camera
while (True):
# blocks until the entire frame is read
success, img = cap.read()
frames += 1
# compute fps: current_time - last_time
delta_time = datetime.datetime.now() - last_time
elapsed_time = delta_time.total_seconds()
cur_fps = np.around(frames / elapsed_time, 1)
# draw FPS text and display image
cv2.putText(img, 'FPS: ' + str(cur_fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("webcam", img)
# wait 1ms for ESC to be pressed
key = cv2.waitKey(1)
if (key == 27):
break
# release resources
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
main()
Output:
* Capture width: 640.0
* Capture height: 480.0
* Capture FPS: 30.0 wait time between frames: 33 ms
As mentioned earlier, my camera is able to capture 640x480 images at 30 fps by default and even though the loop above is pretty simple, my display FPS is lower: I'm only able to retrieve frames and display them at 28 or 29 fps and that's without performing any custom image processing in between. What's going on?
The reality is that even though the loop looks pretty simple, there are things happening under the hood that costs just enough processing time to make it difficult for one iteration of the loop to happen in less than 33ms:
cap.read()
executes I/O calls to the camera driver in order to pull the new data. This function blocks execution of your application until the data has been transferred completely;cv2.imshow()
, which is usually slow operation;cv2.waitKey(1)
which is required to keep the window opened;All of these operations, as small as they are, make it incredibly difficult for an application to call cap.read()
, get a new frame and display it at precisely 30 fps.
There's a number of things you can try to speed up the application to be able to display more frames than the camera driver allows and this post covers them well. Just remember this: you won't be able to capture more frames from the camera than what the driver says it supports. You will, however, be able to display more frames.
threading
example.One of the approaches used to increase the amount of images being displayed per second relies on the threading
package to create a separate thread to continuously pull frames from the camera. This happens because the main loop of the application is not blocked on cap.read()
anymore waiting for it to return a new frame, thus increasing the number of frames that can be displayed (or draw) per second.
Note: this approach renders the same image multiple times on a window until the next image from the camera is retrieved. Keep in mind that it might even draw an image while it's contents are still being updated with new data from the camera.
The following application is just an academic example, not something I recommend as production code, to increase the amount of frames per second that are display in a window:
import numpy as np
import cv2
import datetime
from threading import Thread
# global variables
stop_thread = False # controls thread execution
img = None # stores the image retrieved by the camera
def start_capture_thread(cap):
global img, stop_thread
# continuously read fames from the camera
while True:
_, img = cap.read()
if (stop_thread):
break
def main():
global img, stop_thread
# create display window
cv2.namedWindow("webcam", cv2.WINDOW_NORMAL)
# initialize webcam capture object
cap = cv2.VideoCapture(0)
# retrieve properties of the capture object
cap_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
cap_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
cap_fps = cap.get(cv2.CAP_PROP_FPS)
fps_sleep = int(1000 / cap_fps)
print('* Capture width:', cap_width)
print('* Capture height:', cap_height)
print('* Capture FPS:', cap_fps, 'wait time between frames:', fps_sleep)
# start the capture thread: reads frames from the camera (non-stop) and stores the result in img
t = Thread(target=start_capture_thread, args=(cap,), daemon=True) # a deamon thread is killed when the application exits
t.start()
# initialize time and frame count variables
last_time = datetime.datetime.now()
frames = 0
cur_fps = 0
while (True):
# blocks until the entire frame is read
frames += 1
# measure runtime: current_time - last_time
delta_time = datetime.datetime.now() - last_time
elapsed_time = delta_time.total_seconds()
# compute fps but avoid division by zero
if (elapsed_time != 0):
cur_fps = np.around(frames / elapsed_time, 1)
# TODO: make a copy of the image and process it here if needed
# draw FPS text and display image
if (img is not None):
cv2.putText(img, 'FPS: ' + str(cur_fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("webcam", img)
# wait 1ms for ESC to be pressed
key = cv2.waitKey(1)
if (key == 27):
stop_thread = True
break
# release resources
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
main()
threading
and queue
example.The problem of using a queue
is that, performance-wise, what you get depends on how many frames per second the application can pull from the camera. If the camera supports 30 fps then that's what your application might get as long as the image processing operations being done are fast. Otherwise, there will be a drop in the number of frames being displayed (per second) and the size of the queue will slowly increase until all your RAM memory runs out. To avoid that problem, make sure to set queueSize
with a number that prevents the queue from growing beyond what your OS can handle.
The following code is a naive implementation that creates a dedicated thread to grab frames from the camera and puts them in a queue that is later used by the main loop of the application:
import numpy as np
import cv2
import datetime
import queue
from threading import Thread
# global variables
stop_thread = False # controls thread execution
def start_capture_thread(cap, queue):
global stop_thread
# continuously read fames from the camera
while True:
_, img = cap.read()
queue.put(img)
if (stop_thread):
break
def main():
global stop_thread
# create display window
cv2.namedWindow("webcam", cv2.WINDOW_NORMAL)
# initialize webcam capture object
cap = cv2.VideoCapture(0)
#cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
# retrieve properties of the capture object
cap_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
cap_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
cap_fps = cap.get(cv2.CAP_PROP_FPS)
print('* Capture width:', cap_width)
print('* Capture height:', cap_height)
print('* Capture FPS:', cap_fps)
# create a queue
frames_queue = queue.Queue(maxsize=0)
# start the capture thread: reads frames from the camera (non-stop) and stores the result in img
t = Thread(target=start_capture_thread, args=(cap, frames_queue,), daemon=True) # a deamon thread is killed when the application exits
t.start()
# initialize time and frame count variables
last_time = datetime.datetime.now()
frames = 0
cur_fps = 0
while (True):
if (frames_queue.empty()):
continue
# blocks until the entire frame is read
frames += 1
# measure runtime: current_time - last_time
delta_time = datetime.datetime.now() - last_time
elapsed_time = delta_time.total_seconds()
# compute fps but avoid division by zero
if (elapsed_time != 0):
cur_fps = np.around(frames / elapsed_time, 1)
# retrieve an image from the queue
img = frames_queue.get()
# TODO: process the image here if needed
# draw FPS text and display image
if (img is not None):
cv2.putText(img, 'FPS: ' + str(cur_fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("webcam", img)
# wait 1ms for ESC to be pressed
key = cv2.waitKey(1)
if (key == 27):
stop_thread = True
break
# release resources
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
main()
Earlier I said might and here is what I meant: even when I use a dedicated thread to pull frames from the camera and a queue to store them, the displayed fps is still capped to 29.3 when it should have been 30 fps. In this case, I assume that the camera driver or the backend implementation used by VideoCapture
can be blamed for the issue. On Windows, the backend used by default is MSMF.
It is possible to force VideoCapture
to use a different backend by passing the right arguments on the constructor:
cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
My experience with DShow was terrible: the returned CAP_PROP_FPS
from the camera was 0 and the displayed FPS got stuck around 14. This is just an example to illustrate how the backend capture driver can interfere negatively with the camera capture.
But that's something you can explore. Maybe using a different backend on your OS can provide better results. Here's a nice high-level overview of the Video I/O module from OpenCV that lists the supported backends:
Update
In one of the comments of this answer, the OP upgraded OpenCV 4.1 to 4.3 on Mac OS and observed a noticeable improvement on FPS rendering. It looks like it was a performance issue related to cv2.imshow()
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With