I'm a n00b to python, and I'm looking a code snippet/sample which performs the following:
Thank you for your help!
Yvan Janssens
Python wait for user input We can use input() function to achieve this. In this case, the program will wait indefinitely for the user input. Once the user provides the input data and presses the enter key, the program will start executing the next statements.
If you've got a Python program and you want to make it wait, you can use a simple function like this one: time. sleep(x) where x is the number of seconds that you want your program to wait.
Though there are a plethora of ways to make a pause in Python the most prevalent way is to use the wait() function. The wait() method in Python is used to make a running process wait for another function to complete its execution, such as a child process, before having to return to the parent class or event.
The easiest way is to just interrupt it with the usual Ctrl-C (SIGINT). Since Ctrl-C causes KeyboardInterrupt to be raised, just catch it outside the loop and ignore it.
If you're on Unix/Linux then the select module will help you.
import sys
from select import select
print "Press any key to configure or wait 5 seconds..."
timeout = 5
rlist, wlist, xlist = select([sys.stdin], [], [], timeout)
if rlist:
print "Config selected..."
else:
print "Timed out..."
If you're on Windows, then look into the msvcrt module. (Note this doesn't work in IDLE, but will in cmd prompt)
import sys, time, msvcrt
timeout = 5
startTime = time.time()
inp = None
print "Press any key to configure or wait 5 seconds... "
while True:
if msvcrt.kbhit():
inp = msvcrt.getch()
break
elif time.time() - startTime > timeout:
break
if inp:
print "Config selected..."
else:
print "Timed out..."
Edit Changed the code samples so you could tell whether there was a timeout or a keypress...
Here's how I did it:
import threading
import time
import sys
class MyThread(threading.Thread):
def __init__(self, threadID, name, counter, f):
super().__init__()
self.threadID = threadID
self.name = name
self.counter = counter
self.func = f
def run(self):
self.func()
class KeyboardMonitor:
def __init__(self):
# Setting a boolean flag is atomic in Python.
# It's hard to imagine a boolean being
# anything else, with or without the GIL.
# If inter-thread communication is anything more complicated than
# a couple of flags, you should replace low level variables with
# a thread safe buffer.
self.keepGoing = True
def wait4KeyEntry(self):
while self.keepGoing:
s = input("Type q to quit: ")
if s == "q":
self.keepGoing = False
def mainThread(self, f, *args, **kwargs):
"""Pass in some main function you want to run, and this will run it
until keepGoing = False. The first argument of function f must be
this class, so that that function can check the keepGoing flag and
quit when keepGoing is false."""
keyboardThread = MyThread(1, "keyboard_thread", 0, self.wait4KeyEntry)
keyboardThread.start()
while self.keepGoing:
f(self, *args, **kwargs)
def main(keyMonitorInst, *args, **kwargs):
while keyMonitorInst.keepGoing:
print("Running again...")
time.sleep(1)
if __name__ == "__main__":
uut = KeyboardMonitor()
uut.mainThread(main)
Rather than make a blocking call time out, my approach is to start a thread that waits for the user to enter input, while another thread does something else. The two processes communicate through a small number of atomic operations: in this case, setting a boolean flag. For anything more complicated than atomic operations, obviously you should replace the atomic variable with a threadsafe buffer of some kind.
Python doesn't have any standard way to catch this, it gets keyboard input only through input() and raw_input().
If you really want this you could use Tkinter or pygame to catch the keystrokes as "events". There are also some platform-specific solutions like pyHook. But if it's not absolutely vital to your program, I suggest you make it work another way.
If you combine time.sleep, threading.Thread, and sys.stdin.read you can easily wait for a specified amount of time for input and then continue.
t = threading.Thread(target=sys.stdin.read(1) args=(1,))
t.start()
time.sleep(5)
t.join()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With