I am trying to use multiprocessing in python 3.6. I have a for loop
that runs a method
with different arguments. Currently, it is running one at a time which is taking quite a bit of time so I am trying to use multiprocessing. Here is what I have:
def test(self):
for key, value in dict.items():
pool = Pool(processes=(cpu_count() - 1))
pool.apply_async(self.thread_process, args=(key,value))
pool.close()
pool.join()
def thread_process(self, key, value):
# self.__init__()
print("For", key)
I think what my code is using 3 processes to run one method
but I would like to run 1 method per process but I don't know how this is done. I am using 4 cores btw.
This is what gives multiprocessing an upper hand over threading in Python. Multiple processes can be run in parallel because each process has its own interpreter that executes the instructions allocated to it.
The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.
Multiprocessing is a easier to just drop in than threading but has a higher memory overhead. If your code is CPU bound, multiprocessing is most likely going to be the better choice—especially if the target machine has multiple cores or CPUs.
You're making a pool at every iteration of the for loop. Make a pool beforehand, apply the processes you'd like to run in multiprocessing, and then join them:
from multiprocessing import Pool, cpu_count
import time
def t():
# Make a dummy dictionary
d = {k: k**2 for k in range(10)}
pool = Pool(processes=(cpu_count() - 1))
for key, value in d.items():
pool.apply_async(thread_process, args=(key, value))
pool.close()
pool.join()
def thread_process(key, value):
time.sleep(0.1) # Simulate a process taking some time to complete
print("For", key, value)
if __name__ == '__main__':
t()
You're not populating your multiprocessing.Pool
with data - you're re-initializing the pool on each loop. In your case you can use Pool.map()
to do all the heavy work for you:
def thread_process(args):
print(args)
def test():
pool = Pool(processes=(cpu_count() - 1))
pool.map(thread_process, your_dict.items())
pool.close()
if __name__ == "__main__": # important guard for cross-platform use
test()
Also, given all those self
arguments I reckon you're snatching this off of a class instance and if so - don't, unless you know what you're doing. Since multiprocessing in Python essentially works as, well, multi-processing (unlike multi-threading) you don't get to share your memory, which means your data is pickled when exchanging between processes, which means anything that cannot be pickled (like instance methods) doesn't get called. You can read more on that problem on this answer.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With