I'm using a recursive function to sort a list in Python, and I want to keep track of the number of sorts/merges as the function continues. However, when I declare/initialize the variable inside the function, it becomes a local variable inside each successive call of the function. If I declare the variable outside the function, the function thinks it doesn't exist (i.e. has no access to it). How can I share this value across different calls of the function?
I tried to use the "global" variable tag inside and outside the function like this:
global invcount ## I tried here, with and without the global tag
def inv_sort (listIn):
global invcount ## and here, with and without the global tag
if (invcount == undefined): ## can't figure this part out
invcount = 0
#do stuff
But I cannot figure out how to check for the undefined status of the global variable and give it a value on the first recursion call (because on all successive recursions it should have a value and be defined).
My first thought was to return the variable out of each call of the function, but I can't figure out how to pass two objects out of the function, and I already have to pass the list out for the recursion sort to work. My second attempt to resolve this issue involved me adding the variable invcount
to the list I'm passing as the last element with an identifier, like "i27"
. Then I could just check for the presence of the identifier (the letter i
in this example) in the last element and if present pop() it off at the beginning of the function call and re-add it during the recursion. In practice this is becoming really convoluted and while it may work eventually, I'm wondering if there is a more practical or easier solution.
Is there a way to share a variable without directly passing/returning it?
A recursive implementation may have more than one base case, or more than one recursive step. For example, the Fibonacci function has two base cases, n=0 and n=1.
Recursive Functions in Python A recursive function is a function defined in terms of itself via self-referential expressions. This means that the function will continue to call itself and repeat its behavior until some condition is met to return a result.
All iterative loops can be made into recursive functions. However, not ALL recursive functions can be iterative loops, or they are at least VERY complex. You won't find recursion in simple applications. However, they can be particularly useful in mathematical programming, searching algorithms and compilers.
Functions that call itself or two functions that call each other mutually. The functions that call itself are direct recursive and when two functions call each other mutually, then those functions are called indirect recursive functions.
There's couple of things you can do. Taking your example you should modify it like this:
invcount = 0
def inv_sort (listIn):
global invcount
invcount += 1
# do stuff
But this approach means that you should zero invcount
before each call to inv_sort
.
So actually its better to return invcount
as a part of result. For example using tuples like this:
def inv_sort(listIn):
#somewhere in your code recursive call
recursive_result, recursive_invcount = inv_sort(argument)
# this_call_invcount includes recursive_invcount
return this_call_result, this_call_invcount
An alternative might be using a default argument, e.g.:
def inv_sort(listIn, invcount=0):
...
invcount += 1
...
listIn, invcount = inv_sort(listIn, invcount)
...
return listIn, invcount
The downside of this is that your calls get slightly less neat:
l, _ = inv_sort(l) # i.e. ignore the second returned parameter
But this does mean that invcount
automatically gets reset each time the function is called with a single argument (and also provides the opportunity to inject a value of invcount
if necessary for testing: assert result, 6 == inv_sort(test, 5)
).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With