I have a dataframe and I try to get string, where on of column contain some string Df looks like
member_id,event_path,event_time,event_duration 30595,"2016-03-30 12:27:33",yandex.ru/,1 30595,"2016-03-30 12:31:42",yandex.ru/,0 30595,"2016-03-30 12:31:43",yandex.ru/search/?lr=10738&msid=22901.25826.1459330364.89548&text=%D1%84%D0%B8%D0%BB%D1%8C%D0%BC%D1%8B+%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD&suggest_reqid=168542624144922467267026838391360&csg=3381%2C3938%2C2%2C3%2C1%2C0%2C0,0 30595,"2016-03-30 12:31:44",yandex.ru/search/?lr=10738&msid=22901.25826.1459330364.89548&text=%D1%84%D0%B8%D0%BB%D1%8C%D0%BC%D1%8B+%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD&suggest_reqid=168542624144922467267026838391360&csg=3381%2C3938%2C2%2C3%2C1%2C0%2C0,0 30595,"2016-03-30 12:31:45",yandex.ru/search/?lr=10738&msid=22901.25826.1459330364.89548&text=%D1%84%D0%B8%D0%BB%D1%8C%D0%BC%D1%8B+%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD&suggest_reqid=168542624144922467267026838391360&csg=3381%2C3938%2C2%2C3%2C1%2C0%2C0,0 30595,"2016-03-30 12:31:46",yandex.ru/search/?lr=10738&msid=22901.25826.1459330364.89548&text=%D1%84%D0%B8%D0%BB%D1%8C%D0%BC%D1%8B+%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD&suggest_reqid=168542624144922467267026838391360&csg=3381%2C3938%2C2%2C3%2C1%2C0%2C0,0 30595,"2016-03-30 12:31:49",kinogo.co/,1 30595,"2016-03-30 12:32:11",kinogo.co/melodramy/,0
And another df with urls
url 003\.ru\/[a-zA-Z0-9-_%$#?.:+=|()]+\/mobilnyj_telefon_bq_phoenix 003\.ru\/[a-zA-Z0-9-_%$#?.:+=|()]+\/mobilnyj_telefon_fly_ 003\.ru\/sonyxperia 003\.ru\/[a-zA-Z0-9-_%$#?.:+=|()]+\/mobilnye_telefony_smartfony 003\.ru\/[a-zA-Z0-9-_%$#?.:+=|()]+\/mobilnye_telefony_smartfony\/brands5D5Bbr_23 1click\.ru\/sonyxperia 1click\.ru\/[a-zA-Z0-9-_%$#?.:+=|()]+\/chasy-motorola
I use
urls = pd.read_csv('relevant_url1.csv', error_bad_lines=False) substr = urls.url.values.tolist() data = pd.read_csv('data_nts2.csv', error_bad_lines=False, chunksize=50000) result = pd.DataFrame() for i, df in enumerate(data): res = df[df['event_time'].str.contains('|'.join(substr), regex=True)]
but it return me
UserWarning: This pattern has match groups. To actually get the groups, use str.extract.
How can I fix that?
The str. extract() function is used to extract capture groups in the regex pat as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression pat. Regular expression pattern with capturing groups.
Method : Using join regex + loop + re.match() In this, we create a new regex string by joining all the regex list and then match the string against it to check for match using match() with any of the element of regex list.
re.MatchObject.group() method returns the complete matched subgroup by default or a tuple of matched subgroups depending on the number of arguments.
To get access to the text matched by each regex group, pass the group's number to the group(group_number) method. So the first group will be a group of 1. The second group will be a group of 2 and so on. So this is the simple way to access each of the groups as long as the patterns were matched.
The alternative way to get rid of the warning is change the regex so that it is a matching group and not a capturing group. That is the (?:)
notation.
Thus, if the matching group is (url1|url2)
it should be replaced by (?:url1|url2)
.
At least one of the regex patterns in urls
must use a capturing group. str.contains
only returns True or False for each row in df['event_time']
-- it does not make use of the capturing group. Thus, the UserWarning
is alerting you that the regex uses a capturing group but the match is not used.
If you wish to remove the UserWarning
you could find and remove the capturing group from the regex pattern(s). They are not shown in the regex patterns you posted, but they must be there in your actual file. Look for parentheses outside of the character classes.
Alternatively, you could suppress this particular UserWarning by putting
import warnings warnings.filterwarnings("ignore", 'This pattern has match groups')
before the call to str.contains
.
Here is a simple example which demonstrates the problem (and solution):
# import warnings # warnings.filterwarnings("ignore", 'This pattern has match groups') # uncomment to suppress the UserWarning import pandas as pd df = pd.DataFrame({ 'event_time': ['gouda', 'stilton', 'gruyere']}) urls = pd.DataFrame({'url': ['g(.*)']}) # With a capturing group, there is a UserWarning # urls = pd.DataFrame({'url': ['g.*']}) # Without a capturing group, there is no UserWarning. Uncommenting this line avoids the UserWarning. substr = urls.url.values.tolist() df[df['event_time'].str.contains('|'.join(substr), regex=True)]
prints
script.py:10: UserWarning: This pattern has match groups. To actually get the groups, use str.extract. df[df['event_time'].str.contains('|'.join(substr), regex=True)]
Removing the capturing group from the regex pattern:
urls = pd.DataFrame({'url': ['g.*']})
avoids the UserWarning.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With