I have a data frame that looks something like this:
defaultdict(<class 'list'>, {'XYF': TimeUS GyrX GyrY GyrZ AccX \
0 207146570 0.000832914 0.001351716 -0.0004189798 -0.651183
1 207186671 0.001962787 0.001242457 -0.0001859666 -0.6423497
2 207226791 9.520243E-05 0.001076498 -0.0005664826 -0.6360412
3 207246474 0.0001093059 0.001616917 0.0003615251 -0.6342875
4 207286244 0.001412051 0.0007565815 -0.0003780428 -0.637755
[103556 rows x 12 columns], 'DAR': TimeUS RSSI RemRSSI TxBuf Noise RemNoise RxErrors Fixed
0 208046965 159 161 79 25 29 0 0
1 208047074 159 161 79 25 29 0 0
2 208927455 159 159 91 28 28 0 0
3 208927557 159 159 91 28 28 0 0
[4136 rows x 8 columns], 'NK2': TimeUS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IYAW \
0 207147350 -0.02 0.02 0.00 -0.02 0.01 0.20 0 0 0 1.94
1 207187259 -0.02 0.02 0.00 -0.02 0.01 0.20 0 0 0 1.94
2 207227559 -0.02 0.02 0.00 -0.02 0.01 0.14 0 0 0 1.77
3 207308304 0.02 0.02 0.00 -0.01 0.01 -0.05 0 0 0 1.77
4 207347766 0.02 0.02 0.00 -0.01 0.01 -0.05 0 0 0 0.82
I first separated the column I want to do math with:
new_time = dfs['XYF']['TimeUS']
Then I have tried several things to do some math on it but I had no luck. First I just treated it like a list. so
new_time_F = new_time / 1000000
That didn't work, gave me a float error of:
TypeError: unsupported operand type(s) for /: 'str' and 'int'
so I did this:
new_time_F = float (new_time) / 1000000
This give me an error:
TypeError: cannot convert the series to <class 'float'>
I have no idea where to go from here.
What if you do this (as was suggested earlier):
new_time = dfs['XYF']['TimeUS'].astype(float)
new_time_F = new_time / 1000000
Seems your initial data contains strings and not numbers. It would probably be best to ensure that the data is already of the required type up front.
However, you can convert strings to numbers like this:
pd.Series(['123', '42']).astype(float)
instead of float(series)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With