I am new to sympy but I already get a nice output when I plot the implicit function (actually the formula for Cassini's ovals) using sympy:
from sympy import plot_implicit, symbols, Eq, solve
x, y = symbols('x y')
k=2.7
a=3
eq = Eq((x**2 + y**2)**2-2*a**2*(x**2-y**2), k**4-a**4)
plot_implicit(eq)
Now is it actually possible to somehow get the x and y values corresponding to the plot? or alternatively solve the implicit equation without plotting at all?
thanks! :-)
This is an answer addressing your
is it actually possible to somehow get the x and y values corresponding to the plot?
and I say "addressing" because it's not possible to get the x
and y
values used to draw the curves — because the curves are not drawn using a sequenc of 2D points… more on this later,
TL;DR
pli = plot_implicit(...)
series = pli[0]
data, action = series.get_points()
data = np.array([(x_int.mid, y_int.mid) for x_int, y_int in data])
Let's start with your code
from sympy import plot_implicit, symbols, Eq, solve
x, y = symbols('x y')
k=2.7
a=3
eq = Eq((x**2 + y**2)**2-2*a**2*(x**2-y**2), k**4-a**4)
and plot it, with a twist: we save the Plot
object and print it
pli = plot_implicit(eq)
print(pli)
to get
Plot object containing:
[0]: Implicit equation: Eq(-18*x**2 + 18*y**2 + (x**2 + y**2)**2, -27.8559000000000) for x over (-5.0, 5.0) and y over (-5.0, 5.0)
We are interested in this object indexed by 0
,
ob = pli[0]
print(dir(ob))
that gives (ellipsis are mine)
['__class__', …, get_points, …, 'var_y']
The name get_points
sounds full of promise, doesn't it?
print(ob.get_points())
that gives (edited for clarity and with a big cut)
([
[interval(-3.759774, -3.750008), interval(-0.791016, -0.781250)],
[interval(-3.876961, -3.867195), interval(-0.634768, -0.625003)],
[interval(-3.837898, -3.828133), interval(-0.693361, -0.683596)],
[interval(-3.847664, -3.837898), interval(-0.673830, -0.664065)],
...
[interval(3.837895, 3.847661), interval(0.664064, 0.673830)],
[interval(3.828130, 3.837895), interval(0.683596, 0.693362)],
[interval(3.867192, 3.876958), interval(0.625001, 0.634766)],
[interval(3.750005, 3.759770), interval(0.781255, 0.791021)]
], 'fill')
What is this? the documentation of plot_implicit
has
plot_implicit
, by default, uses interval arithmetic to plot functions.
Following the source code of plot_implicit.py
and plot,py
one realizes that, in this case, the actual plotting (speaking of the matpolotlib
backend) is just a line of code
self.ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
where x
and y
are constructed from the list of intervals, as returned from .get_points()
, as follows
x, y = [], []
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
x.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
y.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
so that for each couple of intervals matplotlib
is directed to draw a filled rectangle, small enough that the eye sees a continuous line (note the use of None
to have disjoint rectangles).
We can conclude that the list of couples of intervals
l_xy_intervals = ((pli[0]).get_points())[0]
represents rectangular areas where the implicit expression you are plotting is "true enough"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With