I have a list like so:
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
I want it to look like so
[['a', 'b', 'c'],['d', 'e', 'f'],['g', 'h', 'i']]
what's the most efficient way to do this?
edit: what about going the other way?
[['a', 'b', 'c'],['d', 'e', 'f'],['g', 'h', 'i']]
-->
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
You can do what you want with a simple list comprehension.
>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> [a[i:i+3] for i in range(0, len(a), 3)]
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
If you want the last sub-list to be padded you can do this before the list comprehension:
>>> padding = 0
>>> a += [padding]*(3-len(a)%3)
Combining these together into a single function:
def group(sequence, group_length, padding=None):
if padding is not None:
sequence += [padding]*(group_length-len(sequence)%group_length)
return [sequence[i:i+group_length] for i in range(0, len(sequence), group_length)]
Going the other way:
def flatten(sequence):
return [item for sublist in sequence for item in sublist]
>>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
If you can use numpy, try x.reshape(-1, 3)
In [1]: import numpy as np
In [2]: x = ['a','b','c','d','e','f','g','h','i']
In [3]: x = np.array(x)
In [4]: x.reshape(-1, 3)
Out[4]:
array([['a', 'b', 'c'],
['d', 'e', 'f'],
['g', 'h', 'i']],
dtype='|S1')
if data is big enough, this code is more efficient.
Update
appending cProfile results to explain more efficient
import cProfile
import numpy as np
a = range(10000000*3)
def impl_a():
x = [a[i:i+3] for i in range(0, len(a), 3)]
def impl_b():
x = np.array(a)
x = x.reshape(-1, 3)
print("cProfile reuslt of impl_a()")
cProfile.run("impl_a()")
print("cProfile reuslt of impl_b()")
cProfile.run("impl_b()")
Output is
cProfile reuslt of impl_a()
5 function calls in 15.614 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.499 0.499 15.614 15.614 <string>:1(<module>)
1 14.968 14.968 15.114 15.114 impla.py:6(impl_a)
1 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.146 0.146 0.146 0.146 {range}
cProfile reuslt of impl_b()
5 function calls in 3.142 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 3.142 3.142 <string>:1(<module>)
1 0.000 0.000 3.142 3.142 impla.py:9(impl_b)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
1 3.142 3.142 3.142 3.142 {numpy.core.multiarray.array}
You can use the grouper
recipe from itertools
with a list comprehension:
from itertools import izip_longest # or zip_longest for Python 3.x
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args) # see note above
in_ = [1, 2, 3, 4, 5, 6, 7, 8, 9]
out = [list(t) for t in grouper(in_, 3)]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With