I need to plot two histograms together in Plotly, where each histogram has a line drawn where the mean is, with a label showing the mean value. My code currently draws both histograms, however I have no idea how to add a mean line with the label. Any idea?
import numpy as np
import random
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.graph_objs as go
init_notebook_mode() # run at the start of every ipython notebook
a = np.random.normal(1500, 100, 1000)
b = np.random.normal(1500, 150, 1000)
trace1 = go.Histogram(
x=a,
opacity=0.75,
histnorm='probability',
name='> 180 t/h'
)
trace2 = go.Histogram(
x=b,
opacity=0.75,
histnorm='probability',
name='< 160 t/h',
yaxis='y2'
)
data = [trace1, trace2]
layout = go.Layout(
title='title',
barmode='overlay',
xaxis=dict(
title=''
),
yaxis=dict(
title='Normalized Frequency < 160 t/h'
),
yaxis2=dict(
title='Normalized Frequency > 180 t/h',
anchor='free',
overlaying='y',
side='right',
position=1
)
)
fig = go.Figure(data=data, layout=layout)
iplot(fig)
After hours of fiddling, I think I got to something that roughly works:
a = np.random.normal(1200, 100, 1000)
b = np.random.normal(1500, 150, 1000)
df = pd.DataFrame(np.transpose([a,b]), columns=['a','b'])
a = df.a
b = df.b
trace1 = go.Histogram(
x=df.a,
opacity=0.75,
histnorm='probability',
name='> 180 t/h'
)
trace2 = go.Histogram(
x=df.b,
opacity=0.75,
histnorm='probability',
name='< 160 t/h',
yaxis='y2'
)
# Create traces
data = [trace1, trace2]
layout = go.Layout(
title='item',
barmode='overlay',
xaxis=dict(
title=''
),
yaxis=dict(
title='Normalized Frequency < 160 t/h'
),
yaxis2=dict(
title='Normalized Frequency > 180 t/h',
anchor='free',
overlaying='y',
side='right',
position=1
),
# Mean lines
shapes= [{'line': {'color': '#0099FF', 'dash': 'solid', 'width': 1},
'type': 'line',
'x0': df.a.mean(),
'x1': df.a.mean(),
'xref': 'x',
'y0': -0.1,
'y1': 1,
'yref': 'paper'},
{'line': {'color': '#FDAB5A', 'dash': 'solid', 'width': 1},
'type': 'line',
'x0': df.b.mean(),
'x1': df.b.mean(),
'xref': 'x',
'y0': -0.1,
'y1': 1,
'yref': 'paper'}],
# Annotations
annotations=[
dict(
x=df.a.mean(),
y=1,
xref='x',
yref='paper',
text="Mean a = {:,.0f}".format(df.a.mean()),
showarrow=True,
arrowhead=7,
ax=1,
ay=1,
axref='paper',
ayref='paper'
),
dict(
x=df.b.mean(),
y=0.95,
xref='x',
yref='paper',
text="Mean b = {:,.0f}".format(df.b.mean()),
showarrow=True,
arrowhead=7,
ax=1,
ay=1,
axref='paper',
ayref='paper'
)
]
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig)
Initially I tried to achieve it using cufflinks
. This works fine:
import cufflinks as cf
df.iplot(kind='histogram', histnorm='probability', barmode='overlay',
vline=[dict(x=df.a.mean(),color='#5283AD'), dict(x=df.b.mean(),color='#FDAB5A')])
But if you also try to add the annotations, it's going to remove the vlines.
In the end I used asFigure to return the plotdict with the vlines but no layout. I then extracted the shapes bit to create the solution above manually.
# Return a dict
plotdict = df.iplot(kind='histogram', histnorm='probability', barmode='overlay',
vline=[dict(x=df.a.mean(),color='#5283AD'), dict(x=df.b.mean(),color='#FDAB5A')],
asFigure=True)
https://plot.ly/~jmarrec/326/
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With