So I made an empty dataframe using
df=data[['ID','Matrix','Name','Country', 'Units']]
df['Value']=''
and I am filling it in with code like this, which finds strings containing values of 'Good', 'Bad' in df.Matrix
and filling them with values in sch[i]
:
df.loc[df.Matrix.str.contains('Good'),'Value'] = sch[2]
df.loc[df.Matrix.str.contains('Bad'),'Value'] = sch[6]
df.loc[df.Matrix.str.contains('Excellent'),'Value'] = sch[8]
I have been getting a bunch of errors like both of these two different ones:
C:\Python33\lib\site-packages\pandas\core\strings.py:184: UserWarning: This pattern has match groups. To actually get the groups, use str.extract.
" groups, use str.extract.", UserWarning)
C:\Users\0\Desktop\python\Sorter.py:57: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
df.loc[df.Matrix.str.contains('Bad'),'Value'] = sch[6]
So far I am suppressing the code using
pd.options.mode.chained_assignment = None
If I do not suppress the error messages I will get about 20 of them. Is there another format I can change the data so that I do not get the error message?
I am using python 3 and pandas 0.131 if it helps
The most straightforward way to drop a Pandas dataframe index is to use the Pandas . reset_index() method. By default, the method will only reset the index, forcing values from 0 - len(df)-1 as the index.
Each DataFrame has an is_copy property that is None by default but uses a weakref to reference the source DataFrame if it's a copy. By setting is_copy to None , you can avoid generating a warning.
Pandas provide predefine method “pandas. Series. str. strip()” to remove the whitespace from the string.
To remove prefix from column labels in Pandas DataFrame, use the str. lstrip(~) method.
Here is a good explanation of why this warning was turned on:
Pandas: Chained assignments
Are you sure that is all of your code? Pls show all of what you are doing.
In [13]: df = DataFrame(index=range(5))
In [14]: df['Value'] = ''
In [15]: df.loc[[1,4],'Value'] = 'bad'
In [16]: df.loc[[0,3],'Value'] = 'good'
In [17]: df
Out[17]:
Value
0 good
1 bad
2
3 good
4 bad
[5 rows x 1 columns]
2nd example
In [1]: df = DataFrame(index=range(5))
In [2]: df['Value'] = ''
In [3]: df2 = DataFrame(dict(A=['foo','foo','bar','bar','bah']))
In [4]: df
Out[4]:
Value
0
1
2
3
4
[5 rows x 1 columns]
In [5]: df2
Out[5]:
A
0 foo
1 foo
2 bar
3 bar
4 bah
[5 rows x 1 columns]
In [6]: df.loc[df2.A.str.contains('foo'),'Value'] = 'good'
In [7]: df.loc[df2.A.str.contains('bar'),'Value'] = 'bad'
In [8]: df
Out[8]:
Value
0 good
1 good
2 bad
3 bad
4
[5 rows x 1 columns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With