I am trying to group and count the same info in a row:
#Functions
def postal_saude ():
    global df, lista_solic
    #List of solicitantes in Postal Saude
    list_sol = [lista_solic["name1"], lista_solic["name2"]]
    #filter Postal Saude Solicitantes
    df = df[(df['Cliente']==lista_clientes["6"]) 
        & (df['Nome do solicitante'].isin(list_sol))]
    #Alphabetical order
    df = df.sort_index(by=['Nome do solicitante', 'nomeCorrespondente'])
    #Grouping data of column
    grouping = df.groupby('Tipo do serviços');
    print (grouping)
postal_saude()
When it gets to the df.groupby it raises an error
I have tried searching this same error but I have not found a valid answer to help me fix my problem.
Take a look at this documentation about Group By
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns
The previous is taken from here
Here's a quick example:
df = pd.DataFrame({'a':[1,1,1,2,2,2,3,3,3,3],'b':np.random.randn(10)})
df
   a         b
0  1  1.048099
1  1 -0.830804
2  1  1.007282
3  2 -0.470914
4  2  1.948448
5  2 -0.144317
6  3 -0.645503
7  3 -1.694219
8  3  0.375280
9  3 -0.065624
groups = df.groupby('a')
groups # Tells you what "df.groupby('a')" is, not an error
<pandas.core.groupby.DataFrameGroupBy object at 0x00000000097EEB38>
groups.count() # count the number of 1 present in the 'a' column
   b
a   
1  3
2  3
3  4
groups.sum() # sums the 'b' column values based on 'a' grouping
          b
a          
1  1.224577
2  1.333217
3 -2.030066
You get the idea, you can build from here using the first link I provided.
df_count = groups.count()
df_count
   b
a   
1  3
2  3
3  4
type(df_count) # assigning the `.count()` output to a variable create a new df
pandas.core.frame.DataFrame
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With