Apologies in advance for this, but after two hours of searching and trying I cannot get the right answer here. I have a data frame, populated via pandas io sql.read_frame(). The column that is proving to be too much for me is of dtype
int64
. The integers is of the format YYYYMMDD
. for example 20070530
- 30th of may 2007. I have tried a range of approaches, the most obvious being;
pd.to_datetime(dt['Date'])
and pd.to_datetime(str(dt['Date']))
with multiple variations on the functions different parameters.
The result has been, at best, that the date interpreted as being the time. The date is set to 1970-01-01
- outcome as per above example 1970-01-01 00:00:00.020070530
I also tried various .map()
functions found in simular posts.
I have noticed that according to np.date_range()
can interpret string values of the format YYYYMMDD
, but that is the closest I have come to seeing a solution.
If anyone has an answer, I would be very greatful!
EDIT: In view of the answer from Ed Chum, the problem is most likely related to encoding. rep()
on a subset of the dataFrame yields:
OrdNo LstInvDt\n0
9 20070620\n1
11 20070830\n2
19 20070719\n3
21 20070719\n4
23 20070719\n5
26 20070911\n7
29 20070918\n8
31 0070816\n9
34 20070925\n10
This is when LstInvDt
is dtype int64.
Use pandas. to_datetime() to Convert Integer to Date & Time Format. Let's suppose that your integers contain both the date and time. In that case, the format should be specify is '%Y%m%d%H%M%S' .
to_datetime
accepts a format string:
In [92]: t = 20070530 pd.to_datetime(str(t), format='%Y%m%d') Out[92]: Timestamp('2007-05-30 00:00:00')
example:
In [94]: t = 20070530 df = pd.DataFrame({'date':[t]*10}) df Out[94]: date 0 20070530 1 20070530 2 20070530 3 20070530 4 20070530 5 20070530 6 20070530 7 20070530 8 20070530 9 20070530 In [98]: df['DateTime'] = df['date'].apply(lambda x: pd.to_datetime(str(x), format='%Y%m%d')) df Out[98]: date DateTime 0 20070530 2007-05-30 1 20070530 2007-05-30 2 20070530 2007-05-30 3 20070530 2007-05-30 4 20070530 2007-05-30 5 20070530 2007-05-30 6 20070530 2007-05-30 7 20070530 2007-05-30 8 20070530 2007-05-30 9 20070530 2007-05-30 In [99]: df.dtypes Out[99]: date int64 DateTime datetime64[ns] dtype: object
EDIT
Actually it's quicker to convert the type to string and then convert the entire series to a datetime rather than calling apply on every value:
In [102]: df['DateTime'] = pd.to_datetime(df['date'].astype(str), format='%Y%m%d') df Out[102]: date DateTime 0 20070530 2007-05-30 1 20070530 2007-05-30 2 20070530 2007-05-30 3 20070530 2007-05-30 4 20070530 2007-05-30 5 20070530 2007-05-30 6 20070530 2007-05-30 7 20070530 2007-05-30 8 20070530 2007-05-30 9 20070530 2007-05-30
timings
In [104]: %timeit df['date'].apply(lambda x: pd.to_datetime(str(x), format='%Y%m%d')) 100 loops, best of 3: 2.55 ms per loop In [105]: %timeit pd.to_datetime(df['date'].astype(str), format='%Y%m%d') 1000 loops, best of 3: 396 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With