I have a DataFrame:df as following:
row id name age url
1 e1 tom NaN http1
2 e2 john 25 NaN
3 e3 lucy NaN http3
4 e4 tick 29 NaN
I want to change the NaN to be 0, else to be 1 in the columns: age, url. My code is following, but it is wrong.
import Pandas as pd
df[['age', 'url']].applymap(lambda x: 0 if x=='NaN' else x)
I want to get the following result:
row id name age url
1 e1 tom 0 1
2 e2 john 1 0
3 e3 lucy 0 1
4 e4 tick 1 0
Thanks for your help!
You can replace values of all or selected columns based on the condition of pandas DataFrame by using DataFrame. loc[ ] property. The loc[] is used to access a group of rows and columns by label(s) or a boolean array. It can access and can also manipulate the values of pandas DataFrame.
Use df. replace(np. nan,'',regex=True) method to replace all NaN values to an empty string in the Pandas DataFrame column.
You can use where
with fillna
and condition by isnull
:
df[['age', 'url']] = df[['age', 'url']].where(df[['age', 'url']].isnull(), 1)
.fillna(0).astype(int)
print (df)
row id name age url
0 1 e1 tom 0 1
1 2 e2 john 1 0
2 3 e3 lucy 0 1
3 4 e4 tick 1 0
Or numpy.where
with isnull
:
df[['age', 'url']] = np.where(df[['age', 'url']].isnull(), 0, 1)
print (df)
row id name age url
0 1 e1 tom 0 1
1 2 e2 john 1 0
2 3 e3 lucy 0 1
3 4 e4 tick 1 0
Fastest solution with notnull
and astype
:
df[['age', 'url']] = df[['age', 'url']].notnull().astype(int)
print (df)
row id name age url
0 1 e1 tom 0 1
1 2 e2 john 1 0
2 3 e3 lucy 0 1
3 4 e4 tick 1 0
EDIT:
I try modify your solution:
df[['age', 'url']] = df[['age', 'url']].applymap(lambda x: 0 if pd.isnull(x) else 1)
print (df)
row id name age url
0 1 e1 tom 0 1
1 2 e2 john 1 0
2 3 e3 lucy 0 1
3 4 e4 tick 1 0
Timings:
len(df)=4k
:
In [127]: %timeit df[['age', 'url']] = df[['age', 'url']].applymap(lambda x: 0 if pd.isnull(x) else 1)
100 loops, best of 3: 11.2 ms per loop
In [128]: %timeit df[['age', 'url']] = np.where(df[['age', 'url']].isnull(), 0, 1)
100 loops, best of 3: 2.69 ms per loop
In [129]: %timeit df[['age', 'url']] = np.where(pd.notnull(df[['age', 'url']]), 1, 0)
100 loops, best of 3: 2.78 ms per loop
In [131]: %timeit df.loc[:, ['age', 'url']] = df[['age', 'url']].notnull() * 1
1000 loops, best of 3: 1.45 ms per loop
In [136]: %timeit df[['age', 'url']] = df[['age', 'url']].notnull().astype(int)
1000 loops, best of 3: 1.01 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With