I am looking at a group of temporary employees in a dataframe. I am using pandas and I need to get the first 'apnt_ymd' date for each person in the list. So for Greene, I need 2011-04-10. For LEMERISE I need 2011-05-08.
In:name = temphires[['ssno','nm_emp_lst','nm_emp_fst','apnt_ymd']].sort('ssno')
name.drop_duplicates(['apnt_ymd'])
ssno nm_emp_lst nm_emp_fst apnt_ymd
299769 123456789 GREENE ALTON 2014-05-04
192323 123456789 GREENE ALTON 2013-04-07
192324 123456789 GREENE ALTON 2012-04-08
102872 123456789 GREENE ALTON 2011-04-10
175701 987654321 DUBE JEFFREY 2013-04-21
177583 777888999 IRVING SARA 2013-05-13
4785 777888999 IRVING SARA 2012-05-16
222300 444444444 LEMERISE GEORGE 2013-04-14
24386 444444444 LEMERISE GEORGE 2012-03-25
24434 444444444 LEMERISE GEORGE 2011-05-08
thank you
A couple assumptions, that your apnt_ymd
is a date or datetime already, if not you can convert doing this:
df['apnt_ymd'] = pd.to_datetime(df['apnt_ymd'])
So we can groupby
the nm_emp_list
column and then calculate the lowest value for apnt_ymd
and return the index using idxmin()
. We can then use this index against the original df to display the desired result:
In [4]:
df.loc[df.groupby('nm_emp_lst')['apnt_ymd'].idxmin()]
Out[4]:
id ssno nm_emp_lst nm_emp_fst apnt_ymd
4 175701 987654321 DUBE JEFFREY 2013-04-21
3 102872 123456789 GREENE ALTON 2011-04-10
6 84785 126644444 IRVING SARA 2012-05-16
9 24434 777888999 LEMERISE GEORGE 2011-05-08
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With