I have a data frame with datetimes and integers
import numpy as np
import pandas as pd
df = pd.DataFrame()
df['dt'] = pd.date_range("2017-01-01 12:00", "2017-01-01 12:30", freq="1min")
df['val'] = np.random.choice(xrange(1, 100), df.shape[0])
Gives me
dt val
0 2017-01-01 12:00:00 33
1 2017-01-01 12:01:00 42
2 2017-01-01 12:02:00 44
3 2017-01-01 12:03:00 6
4 2017-01-01 12:04:00 70
5 2017-01-01 12:05:00 94*
6 2017-01-01 12:06:00 42*
7 2017-01-01 12:07:00 97*
8 2017-01-01 12:08:00 12
9 2017-01-01 12:09:00 11
10 2017-01-01 12:10:00 66
11 2017-01-01 12:11:00 71
12 2017-01-01 12:12:00 25
13 2017-01-01 12:13:00 23
14 2017-01-01 12:14:00 39
15 2017-01-01 12:15:00 25
How can I find which N
-minute group of consecutive dt
gives me the maximum sum of val
?
In this case, if N=3
, then the result should be:
dt val
5 2017-01-01 12:05:00 94
6 2017-01-01 12:06:00 42
7 2017-01-01 12:07:00 97
(marked with stars above)
You could use np.convolve
to get the correct starting index and go from there.
def cons_max(df, N):
max_loc = np.convolve(df.val, np.ones(N, dtype=int), mode='valid').argmax()
return df.loc[max_loc:max_loc+N-1]
Demo
>>> cons_max(df, 3)
dt val
5 2017-01-01 12:05:00 94
6 2017-01-01 12:06:00 42
7 2017-01-01 12:07:00 97
>>> cons_max(df, 5)
dt val
4 2017-01-01 12:04:00 70
5 2017-01-01 12:05:00 94
6 2017-01-01 12:06:00 42
7 2017-01-01 12:07:00 97
8 2017-01-01 12:08:00 12
This works be effectively "sliding" the kernel (array of ones) across our input and multiply-accumulating the elements in our window of size N
together.
You could use rolling/sum
and np.nanargmax
to find the index associated with the first occurrence of the maximum value:
import numpy as np
import pandas as pd
df = pd.DataFrame({'dt': ['2017-01-01 12:00:00', '2017-01-01 12:01:00', '2017-01-01 12:02:00', '2017-01-01 12:03:00', '2017-01-01 12:04:00', '2017-01-01 12:05:00', '2017-01-01 12:06:00', '2017-01-01 12:07:00', '2017-01-01 12:08:00', '2017-01-01 12:09:00', '2017-01-01 12:10:00', '2017-01-01 12:11:00', '2017-01-01 12:12:00', '2017-01-01 12:13:00', '2017-01-01 12:14:00', '2017-01-01 12:15:00'], 'val': [33, 42, 44, 6, 70, 94, 42, 97, 12, 11, 66, 71, 25, 23, 39, 25]})
df.index = df.index*10
N = 3
idx = df['val'].rolling(window=N).sum()
i = np.nanargmax(idx) + 1
print(df.iloc[i-N : i])
prints
dt val
50 2017-01-01 12:05:00 94
60 2017-01-01 12:06:00 42
70 2017-01-01 12:07:00 97
iloc
uses ordinal indexing. loc
uses label-based indexing. Provided that
both i-N
and i
are valid indices, df.iloc[i-N : i]
will grab a window
(sub-DataFrame) of length N
. In contrast, df.loc[i-N, i]
will only grab a
window of length N
if the index uses consecutive integers. The example above
shows a DataFrame where df.loc
would not work since df.index
has
non-consecutive integer values.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With