Using sample data:
df = pd.DataFrame({'key1' : ['a','a','b','b','a'],                'key2' : ['one', 'two', 'one', 'two', 'one'],                'data1' : np.random.randn(5),                'data2' : np. random.randn(5)})   df
    data1        data2     key1  key2 0    0.361601    0.375297    a   one 1    0.069889    0.809772    a   two 2    1.468194    0.272929    b   one 3   -1.138458    0.865060    b   two 4   -0.268210    1.250340    a   one   I'm trying to figure out how to group the data by key1 and sum only the data1 values where key2 equals 'one'.
Here's what I've tried
def f(d,a,b):     d.ix[d[a] == b, 'data1'].sum()  df.groupby(['key1']).apply(f, a = 'key2', b = 'one').reset_index()   But this gives me a dataframe with 'None' values
index   key1    0 0       a       None 1       b       None   Any ideas here? I'm looking for the Pandas equivalent of the following SQL:
SELECT Key1, SUM(CASE WHEN Key2 = 'one' then data1 else 0 end) FROM df GROUP BY key1   FYI - I've seen conditional sums for pandas aggregate but couldn't transform the answer provided there to work with sums rather than counts.
Thanks in advance
Use DataFrame. groupby(). sum() to group rows based on one or multiple columns and calculate sum agg function. groupby() function returns a DataFrameGroupBy object which contains an aggregate function sum() to calculate a sum of a given column for each group.
How to Sum rows by condition Pandas Dataframe using loc[] The Python Pandas sum() function returns the sum of the given values over the requested axis. If the parameter is axis=0 for summing the rows of Pandas dataframe it is the default value.
groupby() function is used to split the data into groups based on some criteria. pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. sort : Sort group keys.
First groupby the key1 column:
In [11]: g = df.groupby('key1')   and then for each group take the subDataFrame where key2 equals 'one' and sum the data1 column:
In [12]: g.apply(lambda x: x[x['key2'] == 'one']['data1'].sum()) Out[12]: key1 a       0.093391 b       1.468194 dtype: float64   To explain what's going on let's look at the 'a' group:
In [21]: a = g.get_group('a')  In [22]: a Out[22]:       data1     data2 key1 key2 0  0.361601  0.375297    a  one 1  0.069889  0.809772    a  two 4 -0.268210  1.250340    a  one  In [23]: a[a['key2'] == 'one'] Out[23]:       data1     data2 key1 key2 0  0.361601  0.375297    a  one 4 -0.268210  1.250340    a  one  In [24]: a[a['key2'] == 'one']['data1'] Out[24]: 0    0.361601 4   -0.268210 Name: data1, dtype: float64  In [25]: a[a['key2'] == 'one']['data1'].sum() Out[25]: 0.093391000000000002   It may be slightly easier/clearer to do this by restricting the dataframe to just those with key2 equals one first:
In [31]: df1 = df[df['key2'] == 'one']  In [32]: df1 Out[32]:       data1     data2 key1 key2 0  0.361601  0.375297    a  one 2  1.468194  0.272929    b  one 4 -0.268210  1.250340    a  one  In [33]: df1.groupby('key1')['data1'].sum() Out[33]: key1 a       0.093391 b       1.468194 Name: data1, dtype: float64 
                        I think that today with pandas 0.23 you can do this:
import numpy as np   df.assign(result = np.where(df['key2']=='one',df.data1,0))\    .groupby('key1').agg({'result':sum})   The advantage of this is that you can apply it to more than one column of the same dataframe
df.assign(  result1 = np.where(df['key2']=='one',df.data1,0),  result2 = np.where(df['key2']=='two',df.data1,0)   ).groupby('key1').agg({'result1':sum, 'result2':sum}) 
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With