Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Python. Pandas. BigData. Messy TSV file. How to wrangle the data?

So. We have a messy data stored in a TSV file that I need to analyse. This is how it looks

status=200  protocol=http   region_name=Podolsk datetime=2016-03-10 15:51:58    user_ip=0.120.81.243    user_agent=Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36    user_id=7885299833141807155 user_vhost=tindex.ru    method=GET  page=/search/

And the problem is that some of the rows have different column order / some of them missing values and I need to get rid of that with high performance (since the datasets I am working with are up to 100 Gigabytes).

Data = pd.read_table('data/data.tsv', sep='\t+',header=None,names=['status', 'protocol',\
                                                     'region_name', 'datetime',\
                                                     'user_ip', 'user_agent',\
                                                     'user_id', 'user_vhost',\
                                                     'method', 'page'], engine='python')
Clean_Data = (Data.dropna()).reset_index(drop=True)

Now I got rid of missing values but one problem still remains! This is how the data looks: enter image description here

And this is how the problem looks: enter image description here

As you can see some of columns are offset. I made a very low-performance solution

ids = Clean_Data.index.tolist()
for column in Clean_Data.columns:
    for row, i in zip(Clean_Data[column], ids):
        if np.logical_not(str(column) in row):
            Clean_Data.drop([i], inplace=True)
            ids.remove(i)

So now the data looks good... at least I can work with it! But what is the High-Performance ALTERNATIVE to the method I made above?

Update on unutbu code: traceback error

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-4-52c9d76f9744> in <module>()
      8     df.index.names = ['index', 'num']
      9 
---> 10     df = df.set_index('field', append=True)
     11     df.index = df.index.droplevel(level='num')
     12     df = df['value'].unstack(level=1)

/Users/Peter/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in set_index(self, keys, drop, append, inplace, verify_integrity)
   2805             if isinstance(self.index, MultiIndex):
   2806                 for i in range(self.index.nlevels):
-> 2807                     arrays.append(self.index.get_level_values(i))
   2808             else:
   2809                 arrays.append(self.index)

/Users/Peter/anaconda/lib/python2.7/site-packages/pandas/indexes/multi.pyc in get_level_values(self, level)
    664         values = _simple_new(filled, self.names[num],
    665                              freq=getattr(unique, 'freq', None),
--> 666                              tz=getattr(unique, 'tz', None))
    667         return values
    668 

/Users/Peter/anaconda/lib/python2.7/site-packages/pandas/indexes/range.pyc in _simple_new(cls, start, stop, step, name, dtype, **kwargs)
    124                 return RangeIndex(start, stop, step, name=name, **kwargs)
    125             except TypeError:
--> 126                 return Index(start, stop, step, name=name, **kwargs)
    127 
    128         result._start = start

/Users/Peter/anaconda/lib/python2.7/site-packages/pandas/indexes/base.pyc in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
    212             if issubclass(data.dtype.type, np.integer):
    213                 from .numeric import Int64Index
--> 214                 return Int64Index(data, copy=copy, dtype=dtype, name=name)
    215             elif issubclass(data.dtype.type, np.floating):
    216                 from .numeric import Float64Index

/Users/Peter/anaconda/lib/python2.7/site-packages/pandas/indexes/numeric.pyc in __new__(cls, data, dtype, copy, name, fastpath, **kwargs)
    105             # with a platform int
    106             if (dtype is None or
--> 107                     not issubclass(np.dtype(dtype).type, np.integer)):
    108                 dtype = np.int64
    109 

TypeError: data type "index" not understood

Pandas version : 0.18.0-np110py27_0

Update

Everything worked... Thanks everybody!

like image 333
Petr Fedosov Avatar asked May 06 '16 22:05

Petr Fedosov


2 Answers

Suppose you had TSV data such as this:

status=A    protocol=B  region_name=C   datetime=D  user_ip=E   user_agent=F    user_id=G
user_id=G   status=A    region_name=C   user_ip=E   datetime=D  user_agent=F    protocol=B
protocol=B      datetime=D  status=A    user_ip=E   user_agent=F    user_id=G

The order of the fields may be scambled, and there may be missing values. However, you don't have to drop rows just because the fields don't appear in a certain order. You can use the field names provided in the row data itself to place the values in the correct columns. For example,

import pandas as pd

df = pd.read_table('data/data.tsv', sep='\t+',header=None, engine='python')
df = df.stack().str.extract(r'([^=]*)=(.*)', expand=True).dropna(axis=0)
df.columns = ['field', 'value']

df = df.set_index('field', append=True)
df.index = df.index.droplevel(level=1)
df = df['value'].unstack(level=1)

print(df)

yields

field datetime protocol region_name status user_agent user_id user_ip
index                                                                
0            D        B           C      A          F       G       E
1            D        B           C      A          F       G       E
2            D        B        None      A          F       G       E

To handle a large TSV file, you could process rows in chunks, and then concatenate the processed chunks into one DataFrame at the end:

import pandas as pd

chunksize =     # the number of rows to be processed per iteration
dfs = []
reader = pd.read_table('data/data.tsv', sep='\t+',header=None, engine='python',
                       iterator=True, chunksize=chunksize)
for df in reader:
    df = df.stack().str.extract(r'([^=]*)=(.*)', expand=True).dropna(axis=0)
    df.columns = ['field', 'value']
    df.index.names = ['index', 'num']

    df = df.set_index('field', append=True)
    df.index = df.index.droplevel(level='num')
    df = df['value'].unstack(level=1)
    dfs.append(df)

df = pd.concat(dfs, ignore_index=True)
print(df)

Explanation: Given df:

In [527]: df = pd.DataFrame({0: ['status=A', 'user_id=G', 'protocol=B'],
 1: ['protocol=B', 'status=A', 'datetime=D'],
 2: ['region_name=C', 'region_name=C', 'status=A'],
 3: ['datetime=D', 'user_ip=E', 'user_ip=E'],
 4: ['user_ip=E', 'datetime=D', 'user_agent=F'],
 5: ['user_agent=F', 'user_agent=F', 'user_id=G'],
 6: ['user_id=G', 'protocol=B', None]}); df
   .....:    .....:    .....:    .....:    .....:    .....:    .....: 
Out[527]: 
            0           1              2           3             4             5           6
0    status=A  protocol=B  region_name=C  datetime=D     user_ip=E  user_agent=F   user_id=G
1   user_id=G    status=A  region_name=C   user_ip=E    datetime=D  user_agent=F  protocol=B
2  protocol=B  datetime=D       status=A   user_ip=E  user_agent=F     user_id=G        None

you can coalesce all the values into a single column

In [449]: df.stack()
Out[449]: 
0  0         status=A
   1       protocol=B
   2    region_name=C
   3       datetime=D
   4        user_ip=E
   5     user_agent=F
   6        user_id=G
1  0        user_id=G
   1         status=A
   2    region_name=C
   3        user_ip=E
   4       datetime=D
   5     user_agent=F
   6       protocol=B
2  0       protocol=B
   1       datetime=D
   2         status=A
   3        user_ip=E
   4     user_agent=F
   5        user_id=G
dtype: object

and then apply .str.extract(r'([^=]*)=(.*)') to separate the field name from the value:

In [450]: df = df.stack().str.extract(r'([^=]*)=(.*)', expand=True).dropna(axis=0); df
Out[450]: 
               0  1
0 0       status  A
  1     protocol  B
  2  region_name  C
  3     datetime  D
  4      user_ip  E
  5   user_agent  F
  6      user_id  G
1 0      user_id  G
  1       status  A
  2  region_name  C
  3      user_ip  E
  4     datetime  D
  5   user_agent  F
  6     protocol  B
2 0     protocol  B
  1     datetime  D
  2       status  A
  3      user_ip  E
  4   user_agent  F
  5      user_id  G

To make it easier to reference parts of the DataFrame, let's give the columns and index levels descriptive names:

In [530]: df.columns = ['field', 'value']; df.index.names = ['index', 'num']; df
Out[530]: 
                 field value
index num                   
0     0         status     A
      1       protocol     B
...

Now if we move the field column into the index:

In [531]: df = df.set_index('field', append=True); df
Out[531]: 
                      value
index num field            
0     0   status          A
      1   protocol        B
      2   region_name     C
      3   datetime        D
...

and drop the num index level:

In [532]: df.index = df.index.droplevel(level='num'); df
Out[532]: 
                  value
index field            
0     status          A
      protocol        B
      region_name     C
      datetime        D
... 

then we can obtain a DataFrame of the desired form by moving the field index level into the column index:

In [533]: df = df['value'].unstack(level=1); df
Out[533]: 
field datetime protocol region_name status user_agent user_id user_ip
index                                                                
0            D        B           C      A          F       G       E
1            D        B           C      A          F       G       E
2            D        B        None      A          F       G       E
like image 151
unutbu Avatar answered Sep 28 '22 09:09

unutbu


You can use Pandas' vectorized string operations, specifically str.contains:

import numpy as np

# boolean index of rows to keep
is_valid = np.ones(Clean_data.shape[0], np.bool)

for column in Clean_Data.columns:

    # check whether rows contain this column name
    is_valid &= Clean_Data[column].str.contains(column)

# drop rows where not all elements contain their respective column names
Clean_Data.drop(np.where(~is_valid)[0], inplace=True)
like image 21
ali_m Avatar answered Sep 28 '22 09:09

ali_m