I am attempting to build a model that will attempt to identify the interest category / topic of supplied text. For example:
"Enjoyed playing a game of football earlier."
would resolve to a top level category like:
"Sport".
I'm not sure what the correct terminology is for what I am trying to achieve here so Google hasn't turned up any libraries that may be able to help. With that in mind, my approach would be something like:
My approach would likely involve having individual corpora for each interest category and I'm sure the accuracy would be fairly miserable - I understand it will never be that accurate.
Generally looking for some advice on the viability of what I am trying to accomplish, but the crux of my question: a) is my approach is correct? b) are there any libraries / resources that may be of assistance?
You seem to know a lot of the right terminology. Try searching for "document classification." That is the general problem you are trying to solve. A classifier trained on a representative corpus will be more accurate than you think.
There is plenty of other information, including tutorials, online about this topic:
You should check out Latent Dirichlet Allocation it will give you categories without labels , as always ed chens bolg is a good start.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With