I'm working on a project to measure and visualize image similarity. The images in my dataset come from photographs of images in books, some of which have very high or low exposure rates. For example, the images below come from two different books; the one on the top is an over-exposed reprint of the one on the bottom, wherein the exposure looks good:
I'd like to normalize each image's exposure in Python. I thought I could do so with the following naive approach, which attempts to center each pixel value between 0 and 255:
from scipy.ndimage import imread
import sys
def normalize(img):
'''
Normalize the exposure of an image.
@args:
{numpy.ndarray} img: an array of image pixels with shape:
(height, width)
@returns:
{numpy.ndarray} an image with shape of `img` wherein
all values are normalized such that the min=0 and max=255
'''
_min = img.min()
_max = img.max()
return img - _min * 255 / (_max - _min)
img = imread(sys.argv[1])
normalized = normalize(img)
Only after running this did I realize that this normalization will only help images whose lightest value is less than 255 or whose darkest value is greater than 0.
Is there a straightforward way to normalize the exposure of an image such as the top image above? I'd be grateful for any thoughts others can offer on this question.
Use the normalize() Function of OpenCV to Normalize an Image in Python. Normalization in image processing is used to change the intensity level of pixels. It is used to get better contrast in images with poor contrast due to glare. We can use the normalize() function of OpenCV to normalize an image.
In image processing, normalization is a process that changes the range of pixel intensity values. Applications include photographs with poor contrast due to glare, for example. Normalization is sometimes called contrast stretching or histogram stretching.
the point from normalization comes behind calibrating the different pixels intensities into a normal distribution which makes the image looks better for the visualizer. Main purpose of normalization is to make computation efficient by reducing values between 0 to 1.
Histogram equalisation works surprisingly well for this kind of thing. It's usually better for photographic images, but it's helpful even on line art, as long as there are some non-black/white pixels.
It works well for colour images too: split the bands up, equalize each one separately, and recombine.
I tried on your sample image:
Using libvips:
$ vips hist_equal sample.jpg x.jpg
Or from Python with pyvips:
x = pyvips.Image.new_from_file("sample.jpg")
x = x.hist_equal()
x.write_to_file("x.jpg")
It's very hard to say if it will work for you without seeing a larger sample of your images, but you may find an "auto-gamma" useful. There is one built into ImageMagick and the description - so that you can calculate it yourself - is:
Automagically adjust gamma level of image.
This calculates the mean values of an image, then applies a calculated -gamma adjustment so that the mean color in the image will get a value of 50%.
This means that any solid 'gray' image becomes 50% gray.
This works well for real-life images with little or no extreme dark and light areas, but tend to fail for images with large amounts of bright sky or dark shadows. It also does not work well for diagrams or cartoon like images.
You can try it out yourself on the command line very simply before you go and spend a lot of time coding something that may not work:
convert Tribunal.jpg -auto-gamma result.png
You can do -auto-level
as per your own code beforehand, and a thousand other things too:
convert Tribunal.jpg -auto-level -auto-gamma result.png
I ended up using a numpy implementation of the histogram normalization method @user894763 pointed out. Just save the below as normalize.py then you can call:
python normalize.py cats.jpg
Script:
import numpy as np
from scipy.misc import imsave
from scipy.ndimage import imread
import sys
def get_histogram(img):
'''
calculate the normalized histogram of an image
'''
height, width = img.shape
hist = [0.0] * 256
for i in range(height):
for j in range(width):
hist[img[i, j]]+=1
return np.array(hist)/(height*width)
def get_cumulative_sums(hist):
'''
find the cumulative sum of a numpy array
'''
return [sum(hist[:i+1]) for i in range(len(hist))]
def normalize_histogram(img):
# calculate the image histogram
hist = get_histogram(img)
# get the cumulative distribution function
cdf = np.array(get_cumulative_sums(hist))
# determine the normalization values for each unit of the cdf
sk = np.uint8(255 * cdf)
# normalize the normalization values
height, width = img.shape
Y = np.zeros_like(img)
for i in range(0, height):
for j in range(0, width):
Y[i, j] = sk[img[i, j]]
# optionally, get the new histogram for comparison
new_hist = get_histogram(Y)
# return the transformed image
return Y
img = imread(sys.argv[1])
normalized = normalize_histogram(img)
imsave(sys.argv[1] + '-normalized.jpg', normalized)
Output:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With