I have been practicing building and comparing neural networks using Keras and Tensorflow in python, but when I look to plot the models for comparisons I am receiving an error:
TypeError: 'History' object is not subscriptable
Here is my code for the three models:
############################## Initiate model 1 ############################### # Model 1 has no hidden layers from keras.models import Sequential model1 = Sequential() # Get layers from keras.layers import Dense # Add first layer n_cols = len(X.columns) model1.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,))) # Add output layer model1.add(Dense(units=2, activation='softmax')) # Compile the model model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics= ['accuracy']) # Define early_stopping_monitor from keras.callbacks import EarlyStopping early_stopping_monitor = EarlyStopping(patience=2) # Fit model model1.fit(X, y, validation_split=0.33, epochs=30, callbacks= [early_stopping_monitor], verbose=False) ############################## Initiate model 2 ############################### # Model 2 has 1 hidden layer that has the mean number of nodes of input and output layer model2 = Sequential() # Add first layer model2.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,))) # Add hidden layer import math model2.add(Dense(units=math.ceil((n_cols+2)/2), activation='relu')) # Add output layer model2.add(Dense(units=2, activation='softmax')) # Compile the model model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics= ['accuracy']) # Fit model model2.fit(X, y, validation_split=0.33, epochs=30, callbacks= [early_stopping_monitor], verbose=False) ############################## Initiate model 3 ############################### # Model 3 has 1 hidden layer that is 2/3 the size of the input layer plus the size of the output layer model3 = Sequential() # Add first layer model3.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,))) # Add hidden layer model3.add(Dense(units=math.ceil((n_cols*(2/3))+2), activation='relu')) # Add output layer model3.add(Dense(units=2, activation='softmax')) # Compile the model model3.compile(loss='categorical_crossentropy', optimizer='adam', metrics= ['accuracy']) # Fit model model3.fit(X, y, validation_split=0.33, epochs=30, callbacks= [early_stopping_monitor], verbose=False) # Plot the models plt.plot(model1.history['val_loss'], 'r', model2.history['val_loss'], 'b', model3.history['val_loss'], 'g') plt.xlabel('Epochs') plt.ylabel('Validation score') plt.show()
I have no problems with running any of my models, getting predicted probabilities, plotting ROC curves, or plotting PR curves. However, when I attempt to plot the three curves together I am getting an error from this area of my code:
model1.history['val_loss'] TypeError: 'History' object is not subscriptable
Does anyone have experience with this type of error and can lead me to what I am doing wrong?
Thank you in advance.
Call to model.fit()
returns a History
object that has a member history
, which is of type dict
.
So you can replace :
model2.fit(X, y, validation_split=0.33, epochs=30, callbacks= [early_stopping_monitor], verbose=False)
with
history2 = model2.fit(X, y, validation_split=0.33, epochs=30, callbacks= [early_stopping_monitor], verbose=False)
Similarly for other models.
and then you can use :
plt.plot(history1.history['val_loss'], 'r', history2.history['val_loss'], 'b', history3.history['val_loss'], 'g')
The accepted answer is great. However, in case anyone is trying to access history without storing it during fit, try the following:
Since val_loss
is not an attribute on the History
object and not a key that you can index with, the way you wrote it won't work. However, what you can try is to access the attribute history
in the History
object, which is a dict that should contain val_loss
as a key.
so, replace:
plt.plot(model1.history['val_loss'], 'r', model2.history['val_loss'], 'b', model3.history['val_loss'], 'g')
with
plt.plot(model1.history.history['val_loss'], 'r', model2.history.history['val_loss'], 'b', model3.history.history['val_loss'], 'g')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With