Im trying to smooth a graph line out but since the x-axis values are dates im having great trouble doing this. Say we have a dataframe as follows
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
startDate = '2015-05-15'
endDate = '2015-12-5'
index = pd.date_range(startDate, endDate)
data = np.random.normal(0, 1, size=len(index))
cols = ['value']
df = pd.DataFrame(data, index=index, columns=cols)
Then we plot the data
fig, axs = plt.subplots(1,1, figsize=(18,5))
x = df.index
y = df.value
axs.plot(x, y)
fig.show()
we get
Now to smooth this line there are some usefull staekoverflow questions allready like:
But I just cant seem to get some code working to do this for my example, any suggestions?
The axhline() function in pyplot module of matplotlib library is used to add a horizontal line across the axis.
Select the plot in the Object Manager. In the Property Manager, select the Line tab. Check the Smooth line check box. Adjust the Smooth tension to obtain the desired smoothing.
Matplotlib is a cross-platform, data visualization and graphical plotting library for Python and its numerical extension NumPy. As such, it offers a viable open source alternative to MATLAB. Developers can also use matplotlib's APIs (Application Programming Interfaces) to embed plots in GUI applications.
You can use interpolation functionality that is shipped with pandas
. Because your dataframe has a value for every index already, you can populate it with an index that is more sparse, and fill every previously non-existent indices with NaN
values. Then, after choosing one of many interpolation methods available, interpolate and plot your data:
index_hourly = pd.date_range(startDate, endDate, freq='1H')
df_smooth = df.reindex(index=index_hourly).interpolate('cubic')
df_smooth = df_smooth.rename(columns={'value':'smooth'})
df_smooth.plot(ax=axs, alpha=0.7)
df.plot(ax=axs, alpha=0.7)
fig.show()
There is one workaround, we will create two plots - 1) non smoothed /interploted with date labels 2) smoothed without date labels.
Plot the 1) using argument linestyle=" "
and convert the dates to be plotted on x-axis to string type.
Plot the 2) using the argument linestyle="-"
and interpolating the x-axis and y-axis using np.linespace
and make_interp_spline
respectively.
Following is the use of the discussed workaround for your code.
# your initial code
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.interpolate import make_interp_spline
%matplotlib inline
startDate = "2015-05-15"
endDate = "2015-07-5" #reduced the end date so smoothness is clearly seen
index = pd.date_range(startDate, endDate)
data = np.random.normal(0, 1, size=len(index))
cols = ["value"]
df = pd.DataFrame(data, index=index, columns=cols)
fig, axs = plt.subplots(1, 1, figsize=(40, 12))
x = df.index
y = df.value
# workaround by creating linespace for length of your x axis
x_new = np.linspace(0, len(df.index), 300)
a_BSpline = make_interp_spline(
[i for i in range(0, len(df.index))],
df.value,
k=5,
)
y_new = a_BSpline(x_new)
# plot this new plot with linestyle = "-"
axs.plot(
x_new[:-5], # removing last 5 entries to remove noise, because interpolation outputs large values at the end.
y_new[:-5],
"-",
label="interpolated"
)
# to get the date on x axis we will keep our previous plot but linestyle will be None so it won't be visible
x = list(x.astype(str))
axs.plot(x, y, linestyle=" ", alpha=0.75, label="initial")
xt = [x[i] for i in range(0,len(x),5)]
plt.xticks(xt,rotation="vertical")
plt.legend()
fig.show()
Resulting Plot
Overalpped plot to see the smoothing.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With