Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Python: Finding multiple roots of nonlinear equation

Assume the following function:

f(x) = x * cos(x-4)

With x = [-2.5, 2.5] this function crosses 0 at f(0) = 0 and f(-0.71238898) = 0.

This was determined with the following code:

import math
from scipy.optimize import fsolve
def func(x):
    return x*math.cos(x-4)
x0 = fsolve(func, 0.0)
# returns [0.]
x0 = fsolve(func, -0.75)
# returns [-0.71238898]

What is the proper way to use fzero (or any other Python root finder) to find both roots in one call? Is there a different scipy function that does this?

fzero reference

like image 383
Jason Strimpel Avatar asked Oct 24 '12 17:10

Jason Strimpel


People also ask

What does Fsolve do in Python?

Find the roots of a function. Return the roots of the (non-linear) equations defined by func(x) = 0 given a starting estimate. A function that takes at least one (possibly vector) argument, and returns a value of the same length.


2 Answers

I once wrote a module for this task. It's based on chapter 4.3 from the book Numerical Methods in Engineering with Python by Jaan Kiusalaas:

import math

def rootsearch(f,a,b,dx):
    x1 = a; f1 = f(a)
    x2 = a + dx; f2 = f(x2)
    while f1*f2 > 0.0:
        if x1 >= b:
            return None,None
        x1 = x2; f1 = f2
        x2 = x1 + dx; f2 = f(x2)
    return x1,x2

def bisect(f,x1,x2,switch=0,epsilon=1.0e-9):
    f1 = f(x1)
    if f1 == 0.0:
        return x1
    f2 = f(x2)
    if f2 == 0.0:
        return x2
    if f1*f2 > 0.0:
        print('Root is not bracketed')
        return None
    n = int(math.ceil(math.log(abs(x2 - x1)/epsilon)/math.log(2.0)))
    for i in range(n):
        x3 = 0.5*(x1 + x2); f3 = f(x3)
        if (switch == 1) and (abs(f3) >abs(f1)) and (abs(f3) > abs(f2)):
            return None
        if f3 == 0.0:
            return x3
        if f2*f3 < 0.0:
            x1 = x3
            f1 = f3
        else:
            x2 =x3
            f2 = f3
    return (x1 + x2)/2.0

def roots(f, a, b, eps=1e-6):
    print ('The roots on the interval [%f, %f] are:' % (a,b))
    while 1:
        x1,x2 = rootsearch(f,a,b,eps)
        if x1 != None:
            a = x2
            root = bisect(f,x1,x2,1)
            if root != None:
                pass
                print (round(root,-int(math.log(eps, 10))))
        else:
            print ('\nDone')
            break

f=lambda x:x*math.cos(x-4)
roots(f, -3, 3)

roots finds all roots of f in the interval [a, b].

like image 154
halex Avatar answered Oct 23 '22 21:10

halex


Define your function so that it can take either a scalar or a numpy array as an argument:

>>> import numpy as np
>>> f = lambda x : x * np.cos(x-4)

Then pass a vector of arguments to fsolve.

>>> x = np.array([0.0, -0.75])
>>> fsolve(f,x)
array([ 0.        , -0.71238898])
like image 31
John Vinyard Avatar answered Oct 23 '22 21:10

John Vinyard