I need a Python implementation of this function - I want to use it on appengine.
I am not so good in Python so please help.
function encrypt($data) {
return base64_encode(mcrypt_encrypt(MCRYPT_RIJNDAEL_256 ,'oqufXQ(?bc=6_hR2I3sMZChDpb6dDlw4', $data , MCRYPT_MODE_CBC, utf8_encode('fOaiIOkD8*9Xeu_s4_bb87Ox_UG+D9GA')));
}
Have you tried this one (also included below)? It implements the Rijndael block cipher for 16, 24 or 32 bytes. You are using the 256 bit (32 byte) version of the block cipher.
"""
A pure python (slow) implementation of rijndael with a decent interface
To include -
from rijndael import rijndael
To do a key setup -
r = rijndael(key, block_size = 16)
key must be a string of length 16, 24, or 32
blocksize must be 16, 24, or 32. Default is 16
To use -
ciphertext = r.encrypt(plaintext)
plaintext = r.decrypt(ciphertext)
If any strings are of the wrong length a ValueError is thrown
"""
# ported from the Java reference code by Bram Cohen, April 2001
# this code is public domain, unless someone makes
# an intellectual property claim against the reference
# code, in which case it can be made public domain by
# deleting all the comments and renaming all the variables
import copy
import string
shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
[[0, 0], [1, 5], [2, 4], [3, 3]],
[[0, 0], [1, 7], [3, 5], [4, 4]]]
# [keysize][block_size]
num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}
A = [[1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 0, 0, 0, 1]]
# produce log and alog tables, needed for multiplying in the
# field GF(2^m) (generator = 3)
alog = [1]
for i in range(255):
j = (alog[-1] << 1) ^ alog[-1]
if j & 0x100 != 0:
j ^= 0x11B
alog.append(j)
log = [0] * 256
for i in range(1, 255):
log[alog[i]] = i
# multiply two elements of GF(2^m)
def mul(a, b):
if a == 0 or b == 0:
return 0
return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
# substitution box based on F^{-1}(x)
box = [[0] * 8 for i in range(256)]
box[1][7] = 1
for i in range(2, 256):
j = alog[255 - log[i]]
for t in range(8):
box[i][t] = (j >> (7 - t)) & 0x01
B = [0, 1, 1, 0, 0, 0, 1, 1]
# affine transform: box[i] <- B + A*box[i]
cox = [[0] * 8 for i in range(256)]
for i in range(256):
for t in range(8):
cox[i][t] = B[t]
for j in range(8):
cox[i][t] ^= A[t][j] * box[i][j]
# S-boxes and inverse S-boxes
S = [0] * 256
Si = [0] * 256
for i in range(256):
S[i] = cox[i][0] << 7
for t in range(1, 8):
S[i] ^= cox[i][t] << (7-t)
Si[S[i] & 0xFF] = i
# T-boxes
G = [[2, 1, 1, 3],
[3, 2, 1, 1],
[1, 3, 2, 1],
[1, 1, 3, 2]]
AA = [[0] * 8 for i in range(4)]
for i in range(4):
for j in range(4):
AA[i][j] = G[i][j]
AA[i][i+4] = 1
for i in range(4):
pivot = AA[i][i]
if pivot == 0:
t = i + 1
while AA[t][i] == 0 and t < 4:
t += 1
assert t != 4, 'G matrix must be invertible'
for j in range(8):
AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
pivot = AA[i][i]
for j in range(8):
if AA[i][j] != 0:
AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
for t in range(4):
if i != t:
for j in range(i+1, 8):
AA[t][j] ^= mul(AA[i][j], AA[t][i])
AA[t][i] = 0
iG = [[0] * 4 for i in range(4)]
for i in range(4):
for j in range(4):
iG[i][j] = AA[i][j + 4]
def mul4(a, bs):
if a == 0:
return 0
r = 0
for b in bs:
r <<= 8
if b != 0:
r = r | mul(a, b)
return r
T1 = []
T2 = []
T3 = []
T4 = []
T5 = []
T6 = []
T7 = []
T8 = []
U1 = []
U2 = []
U3 = []
U4 = []
for t in range(256):
s = S[t]
T1.append(mul4(s, G[0]))
T2.append(mul4(s, G[1]))
T3.append(mul4(s, G[2]))
T4.append(mul4(s, G[3]))
s = Si[t]
T5.append(mul4(s, iG[0]))
T6.append(mul4(s, iG[1]))
T7.append(mul4(s, iG[2]))
T8.append(mul4(s, iG[3]))
U1.append(mul4(t, iG[0]))
U2.append(mul4(t, iG[1]))
U3.append(mul4(t, iG[2]))
U4.append(mul4(t, iG[3]))
# round constants
rcon = [1]
r = 1
for t in range(1, 30):
r = mul(2, r)
rcon.append(r)
del A
del AA
del pivot
del B
del G
del box
del log
del alog
del i
del j
del r
del s
del t
del mul
del mul4
del cox
del iG
class rijndael:
def __init__(self, key, block_size = 16):
if block_size != 16 and block_size != 24 and block_size != 32:
raise ValueError('Invalid block size: ' + str(block_size))
if len(key) != 16 and len(key) != 24 and len(key) != 32:
raise ValueError('Invalid key size: ' + str(len(key)))
self.block_size = block_size
ROUNDS = num_rounds[len(key)][block_size]
BC = block_size // 4
# encryption round keys
Ke = [[0] * BC for i in range(ROUNDS + 1)]
# decryption round keys
Kd = [[0] * BC for i in range(ROUNDS + 1)]
ROUND_KEY_COUNT = (ROUNDS + 1) * BC
KC = len(key) // 4
# copy user material bytes into temporary ints
tk = []
for i in range(0, KC):
tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
(ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))
# copy values into round key arrays
t = 0
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
tt = 0
rconpointer = 0
while t < ROUND_KEY_COUNT:
# extrapolate using phi (the round key evolution function)
tt = tk[KC - 1]
tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) ^ \
(rcon[rconpointer] & 0xFF) << 24
rconpointer += 1
if KC != 8:
for i in range(1, KC):
tk[i] ^= tk[i-1]
else:
for i in range(1, KC // 2):
tk[i] ^= tk[i-1]
tt = tk[KC // 2 - 1]
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) << 24
for i in range(KC // 2 + 1, KC):
tk[i] ^= tk[i-1]
# copy values into round key arrays
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
# inverse MixColumn where needed
for r in range(1, ROUNDS):
for j in range(BC):
tt = Kd[r][j]
Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
U2[(tt >> 16) & 0xFF] ^ \
U3[(tt >> 8) & 0xFF] ^ \
U4[ tt & 0xFF]
self.Ke = Ke
self.Kd = Kd
def encrypt(self, plaintext):
if len(plaintext) != self.block_size:
raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
Ke = self.Ke
BC = self.block_size // 4
ROUNDS = len(Ke) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][0]
s2 = shifts[SC][2][0]
s3 = shifts[SC][3][0]
a = [0] * BC
# temporary work array
t = []
# plaintext to ints + key
for i in range(BC):
t.append((ord(plaintext[i * 4 ]) << 24 |
ord(plaintext[i * 4 + 1]) << 16 |
ord(plaintext[i * 4 + 2]) << 8 |
ord(plaintext[i * 4 + 3]) ) ^ Ke[0][i])
# apply round transforms
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in range(BC):
tt = Ke[ROUNDS][i]
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((S[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((S[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return ''.join(map(chr, result))
def decrypt(self, ciphertext):
if len(ciphertext) != self.block_size:
raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(ciphertext)))
Kd = self.Kd
BC = self.block_size // 4
ROUNDS = len(Kd) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][1]
s2 = shifts[SC][2][1]
s3 = shifts[SC][3][1]
a = [0] * BC
# temporary work array
t = [0] * BC
# ciphertext to ints + key
for i in range(BC):
t[i] = (ord(ciphertext[i * 4 ]) << 24 |
ord(ciphertext[i * 4 + 1]) << 16 |
ord(ciphertext[i * 4 + 2]) << 8 |
ord(ciphertext[i * 4 + 3]) ) ^ Kd[0][i]
# apply round transforms
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in range(BC):
tt = Kd[ROUNDS][i]
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((Si[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((Si[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return ''.join(map(chr, result))
def encrypt(key, block):
return rijndael(key, len(block)).encrypt(block)
def decrypt(key, block):
return rijndael(key, len(block)).decrypt(block)
Note that the rijndael.py
file only implements the block cipher. The encrypt
/ decrypt
functions only handle plaintexts that are precisely the block size. This means that the caller of these functions will have to provide the block cipher mode of operation and the zero padding himself.
Example python code (from a Java programmer, beware):
class zeropad:
def __init__(self, block_size):
assert block_size > 0 and block_size < 256
self.block_size = block_size
def pad(self, pt):
ptlen = len(pt)
padsize = self.block_size - ((ptlen + self.block_size - 1) % self.block_size + 1)
return pt + "\0" * padsize
def unpad(self, ppt):
assert len(ppt) % self.block_size == 0
offset = len(ppt)
if (offset == 0):
return ''
end = offset - self.block_size + 1
while (offset > end):
offset -= 1;
if (ppt[offset] != "\0"):
return ppt[:offset + 1]
assert false
class cbc:
def __init__(self, padding, cipher, iv):
assert padding.block_size == cipher.block_size;
assert len(iv) == cipher.block_size;
self.padding = padding
self.cipher = cipher
self.iv = iv
def encrypt(self, pt):
ppt = self.padding.pad(pt)
offset = 0
ct = ''
v = self.iv
while (offset < len(ppt)):
block = ppt[offset:offset + self.cipher.block_size]
block = self.xorblock(block, v)
block = self.cipher.encrypt(block)
ct += block
offset += self.cipher.block_size
v = block
return ct;
def decrypt(self, ct):
assert len(ct) % self.cipher.block_size == 0
ppt = ''
offset = 0
v = self.iv
while (offset < len(ct)):
block = ct[offset:offset + self.cipher.block_size]
decrypted = self.cipher.decrypt(block)
ppt += self.xorblock(decrypted, v)
offset += self.cipher.block_size
v = block
pt = self.padding.unpad(ppt)
return pt;
def xorblock(self, b1, b2):
# sorry, not very Pythonesk
i = 0
r = '';
while (i < self.cipher.block_size):
r += chr(ord(b1[i]) ^ ord(b2[i]))
i += 1
return r
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With