I'm aware of various discussions of limitations of the multiprocessing module when dealing with functions that are data members of a class (due to Pickling problems).
But is there another module, or any sort of work-around in multiprocessing, that allows something specifically like the following (specifically without forcing the definition of the function to be applied in parallel to exist outside of the class)?
class MyClass():
def __init__(self):
self.my_args = [1,2,3,4]
self.output = {}
def my_single_function(self, arg):
return arg**2
def my_parallelized_function(self):
# Use map or map_async to map my_single_function onto the
# list of self.my_args, and append the return values into
# self.output, using each arg in my_args as the key.
# The result should make self.output become
# {1:1, 2:4, 3:9, 4:16}
foo = MyClass()
foo.my_parallelized_function()
print foo.output
Note: I can easily do this by moving my_single_function
outside of the class, and passing something like foo.my_args
to the map
or map_async
commands. But this pushes the parallelized execution of the function outside of instances of MyClass
.
For my application (parallelizing a large data query that retrieves, joins, and cleans monthly cross-sections of data, and then appends them into a long time-series of such cross-sections), it is very important to have this functionality inside the class since different users of my program will instantiate different instances of the class with different time intervals, different time increments, different sub-sets of data to gather, and so on, that should all be associated with that instance.
Thus, I want the work of parallelizing to also be done by the instance, since it owns all the data relevant to the parallelized query, and it would just be silly to try write some hacky wrapper function that binds to some arguments and lives outside of the class (Especially since such a function would be non-general. It would need all kinds of specifics from inside the class.)
Steven Bethard has posted a way to allow methods to be pickled/unpickled. You could use it like this:
import multiprocessing as mp
import copy_reg
import types
def _pickle_method(method):
# Author: Steven Bethard
# http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
cls_name = ''
if func_name.startswith('__') and not func_name.endswith('__'):
cls_name = cls.__name__.lstrip('_')
if cls_name:
func_name = '_' + cls_name + func_name
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
# Author: Steven Bethard
# http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
for cls in cls.mro():
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
# This call to copy_reg.pickle allows you to pass methods as the first arg to
# mp.Pool methods. If you comment out this line, `pool.map(self.foo, ...)` results in
# PicklingError: Can't pickle <type 'instancemethod'>: attribute lookup
# __builtin__.instancemethod failed
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class MyClass(object):
def __init__(self):
self.my_args = [1,2,3,4]
self.output = {}
def my_single_function(self, arg):
return arg**2
def my_parallelized_function(self):
# Use map or map_async to map my_single_function onto the
# list of self.my_args, and append the return values into
# self.output, using each arg in my_args as the key.
# The result should make self.output become
# {1:1, 2:4, 3:9, 4:16}
self.output = dict(zip(self.my_args,
pool.map(self.my_single_function, self.my_args)))
Then
pool = mp.Pool()
foo = MyClass()
foo.my_parallelized_function()
yields
print foo.output
# {1: 1, 2: 4, 3: 9, 4: 16}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With