Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

python - create a pivot table

I'm trying to create a pivot table from a Numpy array in python. I've done a lot of research but I cannot find a straight forward solution. I know you can do it with Pandas but I'm having trouble installing it - but there must be a way of doing it without Pandas. My Numpy array is

[[ 4057     8  1374]
 [ 4057     9   759]
 [ 4057    11    96]
 ..., 
 [89205    16   146]
 [89205    17   154]
 [89205    18   244]]

I need a pivot table where the rows are the first column, the columns are the second column and the values are the third column. Help please!

Thanks

like image 663
user1893354 Avatar asked Jun 10 '13 16:06

user1893354


1 Answers

I think this is what you want:

data = np.array([[ 4057,     8,  1374],
                 [ 4057,     9,   759],
                 [ 4057,    11,    96],
                 [89205,    16,   146],
                 [89205,    17,   154],
                 [89205,    18,   244]])

rows, row_pos = np.unique(data[:, 0], return_inverse=True)
cols, col_pos = np.unique(data[:, 1], return_inverse=True)

pivot_table = np.zeros((len(rows), len(cols)), dtype=data.dtype)
pivot_table[row_pos, col_pos] = data[:, 2]

>>> pivot_table
array([[1374,  759,   96,    0,    0,    0],
       [   0,    0,    0,  146,  154,  244]])
>>> rows
array([ 4057, 89205])
>>> cols
array([ 8,  9, 11, 16, 17, 18])

There are some limitations to this approach, the main being that, if you have repeated entries for a same row/column combination, they will not be added together, but only one (possibly the last) will be kept. If you want to add them all together, although a little convoluted, you could abuse scipy's sparse module:

data = np.array([[ 4057,     8,  1374],
                 [ 4057,     9,   759],
                 [ 4057,    11,    96],
                 [89205,    16,   146],
                 [89205,    17,   154],
                 [89205,    18,   244],
                 [ 4057,    11,     4]])

rows, row_pos = np.unique(data[:, 0], return_inverse=True)
cols, col_pos = np.unique(data[:, 1], return_inverse=True)

pivot_table = np.zeros((len(rows), len(cols)), dtype=data.dtype)
pivot_table[row_pos, col_pos] = data[:, 2]
>>> pivot_table # the element at [0, 2] should be 100!!!
array([[1374,  759,    4,    0,    0,    0],
       [   0,    0,    0,  146,  154,  244]])

import scipy.sparse as sps
pivot_table = sps.coo_matrix((data[:, 2], (row_pos, col_pos)),
                             shape=(len(rows), len(cols))).A
>>> pivot_table # now repeated elements are added together
array([[1374,  759,  100,    0,    0,    0],
       [   0,    0,    0,  146,  154,  244]])
like image 128
Jaime Avatar answered Nov 09 '22 23:11

Jaime