Assuming I have a df:
df = pd.DataFrame({'id': [12, 35, 37, 67, 99, 78],
'product': ['banana', 'apple', 'banana', 'pear', 'banana', 'apple'],
'reordered': [1, 0, 0, 1, 1, 1]})
id product reordered
0 12 banana 1
1 35 apple 0
2 37 banana 0
3 67 pear 1
4 99 banana 1
5 78 apple 1
I would like to count the number of occurrences of products in 'product' column, as well as values in 'reordered' columns grouped by products. Desired outcome:
product count reordered_0 reordered_1
0 banana 3 1 2
1 apple 2 1 1
2 pear 1 1 0
Please advice
Use crosstab with DataFrame.insert for column for first position:
df = pd.crosstab(df['product'], df.reordered).add_prefix('reordered_')
df.insert(0, 'count', df.sum(axis=1))
df = df.reset_index().rename_axis(None, axis=1)
print(df)
product count reordered_0 reordered_1
0 apple 2 1 1
1 banana 3 1 2
2 pear 1 0 1
Let's try with crosstab:
(pd.crosstab(df['product'], df['reordered'])
.add_prefix('reordered_')
.assign(count=lambda x: x.sum(1))
.reset_index()
)
Output:
reordered product reordered_0 reordered_1 count
0 apple 1 1 2
1 banana 1 2 3
2 pear 0 1 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With