I'm trying to achieve the following. I want to create a python Class that transforms all tables in a database to pandas dataframes.
This is how I do it, which is not very generic...
class sql2df():
    def __init__(self, db, password='123',host='127.0.0.1',user='root'):
        self.db = db
        mysql_cn= MySQLdb.connect(host=host,
                        port=3306,user=user, passwd=password, 
                        db=self.db)
        self.table1 = psql.frame_query('select * from table1', mysql_cn)
        self.table2 = psql.frame_query('select * from table2', mysql_cn)
        self.table3 = psql.frame_query('select * from table3', mysql_cn)
Now I can access all tables like so:
my_db = sql2df('mydb')
my_db.table1
I want something like:
class sql2df():
    def __init__(self, db, password='123',host='127.0.0.1',user='root'):
        self.db = db
        mysql_cn= MySQLdb.connect(host=host,
                        port=3306,user=user, passwd=password, 
                        db=self.db)
        tables = (""" SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_SCHEMA = '%s' """ % self.db)
        <some kind of iteration that gives back all the tables in df as class attributes>
Suggestions are most welcome...
I would use SQLAlchemy for this:
engine = sqlalchemy.create_engine("mysql+mysqldb://root:[email protected]/%s" % db)
Note the syntax is dialect+driver://username:password@host:port/database.
def db_to_frames_dict(engine):
    meta = sqlalchemy.MetaData()
    meta.reflect(bind=engine)
    tables = meta.sorted_tables
    return {t: pd.read_sql('SELECT * FROM %s' % t.name,
                           engine.raw_connection())
                   for t in tables}
    # Note: frame_query is depreciated in favor of read_sql
This returns a dictionary, but you could equally well have these as class attributes (e.g. by updating the class dict and __getitem__)
class SQLAsDataFrames:
    def __init__(self, engine):
        self.__dict__ = db_to_frames_dict(engine)  # allows .table_name access
    def __getitem__(self, key):                    # allows [table_name] access
        return self.__dict__[key]
In pandas 0.14 the sql code has been rewritten to take engines, and IIRC there is helpers for all tables and for reading all of a table (using read_sql(table_name)).
Here is what I have now: Imports
 import sqlalchemy
 from sqlalchemy import create_engine
 from sqlalchemy import Table, Column,Date, Integer, String, MetaData, ForeignKey
 from sqlalchemy.ext.declarative import declarative_base
 from sqlalchemy.orm import relationship, backref
 import pandas as pd
engine = sqlalchemy.create_engine("mysql+mysqldb://root:[email protected]/%s" % 'surveytest')
def db_to_frames_dict(engine):
    meta = sqlalchemy.MetaData()
    meta.reflect(bind=engine)
    tables = meta.sorted_tables
    return {t: pd.read_sql('SELECT * FROM %s' % t.name, engine.connect())
               for t in tables}
# Note: frame_query is depreciated in favor of read_sql
Have not started to fiddle with this part yet! below:
class SQLAsDataFrames:
    def __init__(self, engine):
        self.__dict__ = db_to_frames_dict(engine)  # allows .table_name access
    def __getitem__(self, key):                    # allows [table_name] access
        return self.__dict__[key]
And the error: Which looks like at least it is trying to get the table names...
frames=db_to_frames_dict(engine)
frames
Error on sql SELECT * FROM tbl_original_survey_master
---------------------------------------------------------------------------
 AttributeError                            Traceback (most recent call last)
 <ipython-input-4-6b0006e1ce47> in <module>()
 ----> 1 frames=db_to_frames_dict(engine)
 >>>> more tracebck
 ---> 53             con.rollback()
 54         except Exception:  # pragma: no cover
 55             pass
 AttributeError: 'Connection' object has no attribute 'rollback'
Thank you for sticking with this!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With