I have an image in bytes:
print(image_bytes)
b'\xff\xd8\xff\xfe\x00\x10Lavc57.64.101\x00\xff\xdb\x00C\x00\x08\x04\x04\x04\x04\x04\x05\x05\x05\x05\x05\x05\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x07\x07\x07\x08\x08\x08\x07\x07\x07\x06\x06\x07\x07\x08\x08\x08\x08\t\t\t\x08\x08\x08\x08\t\t\n\n\n\x0c\x0c\x0b\x0b\x0e\x0e\x0e\x11\x11\x14\xff\xc4\x01\xa2\x00\x00\x01\x05\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01\x01\x00\x00\ ... some other stuff
I am able to convert it to a NumPy array using Pillow
:
image = numpy.array(Image.open(io.BytesIO(image_bytes)))
But I don't really like using Pillow. Is there a way to use clear OpenCV, or directly NumPy even better, or some other faster library?
I created a 2x2 JPEG image to test this. The image has white, red, green and purple pixels. I used cv2.imdecode
and numpy.frombuffer
import cv2
import numpy as np
f = open('image.jpg', 'rb')
image_bytes = f.read() # b'\xff\xd8\xff\xe0\x00\x10...'
decoded = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), -1)
print('OpenCV:\n', decoded)
# your Pillow code
import io
from PIL import Image
image = np.array(Image.open(io.BytesIO(image_bytes)))
print('PIL:\n', image)
This seems to work, although the channel order is BGR and not RGB as in PIL.Image
. There are probably some flags you might use to tune this. Test results:
OpenCV:
[[[255 254 255]
[ 0 0 254]]
[[ 1 255 0]
[254 0 255]]]
PIL:
[[[255 254 255]
[254 0 0]]
[[ 0 255 1]
[255 0 254]]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With