I have a problem while plotting a matrix with python bokeh and glyphs.
I'm a newbie in Bokeh and just adapted a code I found on the web.
Everything seems to be ok but there is an offset when I launch the function.
And the thing I'd like to have is :
the code is the following, please tell me if you see something wrong
def disp(dom,matrixs) :
cols = [] #rome colones
rows = [] #rome lignes
libcol = [] #libelle métiers
librow = []
color = [] #couleurs
rate = [] #%age de compétences déjà validées
mank = [] #liste des compétences manquantes
nbmank = [] #nb de compétences manquantes
nbtot = []
for i in matrixs[dom].columns:
for j in matrixs[dom].columns:
#rome colonne
rows.append(i)
#rome ligne
cols.append(j)
#libs
libcol.append(compbyrome[j]['label'])
librow.append(compbyrome[i]['label'])
#val pourcentage
rateval = matrixs[dom][i][j]
#nb competences manquantes
nbmank.append(len(compbyrome[j]['competences'])-(rateval*len(compbyrome[j]['competences'])/100))
nbtot.append(len(compbyrome[j]['competences']))
rate.append(rateval)
if rateval < 20:
col = 0
elif rateval >= 20 and rateval < 40:
col = 1
elif rateval >= 40 and rateval < 60:
col = 2
elif rateval >= 60 and rateval < 80:
col = 3
else :
col = 4
color.append(colors[col])
TOOLS = "hover,save,pan"
source = ColumnDataSource(
data = dict(
rows=rows,
cols=cols,
librow=librow,
libcol=libcol,
color=color,
rate=rate,
nbmank=nbmank,
nbtot=nbtot)
)
if (len(matrixs[dom].columns)) <= 8 :
taille = 800
elif (len(matrixs[dom].columns)) >= 15:
taille = 1000
else:
taille = len(matrixs[dom].columns)*110
p = figure(
title=str(dom),
x_range=list(reversed(librow)),
y_range=librow,
x_axis_location="above",
plot_width=taille,
plot_height=taille,
toolbar_location="left",
tools=TOOLS
)
p.rect("librow", "libcol", len(matrixs[dom].columns)-1, len(matrixs[dom].columns)-1, source=source,
color="color", line_color=None)
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_text_font_size = "10pt"
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = np.pi/3
hover = p.select(dict(type=HoverTool))
hover.tooltips = """
<div>
provenance = @rows (@librow)
</div>
<div>
évolution = @cols (@libcol)
</div>
<div>
compétences déjà acquises = @rate %
</div>
<div>
nbmanquantes = @nbmank
</div>
<div>
nbtot = @nbtot
</div>
"""
show(p)
I'm getting data from a dict of matrices as you can see, but I think the problem has nothing to do with datas.
I had the same question to. The issue is probably duplicates in your x_range
and y_range
- I got help via the mailing list: cf. https://groups.google.com/a/continuum.io/forum/#!msg/bokeh/rvFcJV5_WQ8/jlm13N5qCAAJ and Issues with Correlation graphs in Bokeh
In your code do:
correct_y_range = sorted(list(set(librow)), reverse=True)
correct_x_range = sorted(list(set(librow)))
Here is a complete example:
from collections import OrderedDict
import numpy as np
import bokeh.plotting as bk
from bokeh.plotting import figure, show, output_file
from bokeh.models import HoverTool, ColumnDataSource
bk.output_notebook() #for viz within ipython notebook
N = 20
arr2d = np.random.randint(0,10,size=(N,N))
predicted = []
actual = []
count = []
color = []
alpha = []
the_color = '#cc0000'
for col in range(N):
for rowi in range(N):
predicted.append(str(rowi))
actual.append(str(col))
count.append(arr2d[rowi,col])
a = arr2d[rowi,col]/10.0
alpha.append(a)
color.append(the_color)
source = ColumnDataSource(
data=dict(predicted=predicted, actual=actual, count=count, alphas=alpha, colors=color)
)
#THE FIX IS HERE! use `set` to dedup
correct_y_range = sorted(list(set(actual)), reverse=True)
correct_x_range = sorted(list(set(predicted)))
p = figure(title='Confusion Matrix',
x_axis_location="above", tools="resize,hover,save",
y_range=correct_y_range, x_range=correct_x_range)
p.plot_width = 600
p.plot_height = p.plot_width
rectwidth = 0.9
p.rect('predicted', 'actual', rectwidth, rectwidth, source=source,
color='colors', alpha='alphas',line_width=1, line_color='k')
p.axis.major_label_text_font_size = "12pt"
p.axis.major_label_standoff = 1
p.xaxis.major_label_orientation = np.pi/3
hover = p.select(dict(type=HoverTool))
hover.tooltips = OrderedDict([
('predicted', '@predicted'),
('actual', '@actual'),
('count', '@count'),
])
show(p)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With