I have the following code below. Essentially what I'm trying to do is to generate some new columns from the values in existing ones. After I do that, I save the dataframe with the new columns as a table in the cluster. Sorry I'm new to pyspark still.
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
from pyspark.sql.functions import udf, array
from pyspark.sql.types import DecimalType
import numpy as np
import math
df = sqlContext.sql('select * from db.mytable')
angle_av = udf(lambda (x, y): -10 if x == 0 else math.atan2(y/x)*180/np.pi, DecimalType(20,10))
df = df.withColumn('a_v_angle', angle_av(array('a_v_real', 'a_v_imag')))
df.createOrReplaceTempView('temp')
sqlContext.sql('create table new_table as select * from temp')
These operations actually don't produce any errors. I then attempt to store the df as a table and get the following error (i'm guessing since this is when the operations are actually executed):
File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 171, in main
process()
File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 166, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 103, in <lambda>
func = lambda _, it: map(mapper, it)
File "<string>", line 1, in <lambda>
File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 70, in <lambda>
return lambda *a: f(*a)
File "<stdin>", line 14, in <lambda>
TypeError: unsupported operand type(s) for /: 'NoneType' and 'NoneType'
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
This happens because input values are null / None. function should check its input and proceed accordingly.
f x == 0 or x is None
or just
if not x
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With