I am trying to clean a time series dataset using spark that is not fully populated and fairly large.
What I would like to do is convert the following dataset as such
Group | TS | Value
____________________________
A | 01-01-2018 | 1
A | 01-02-2018 | 2
A | 01-03-2018 |
A | 01-04-2018 |
A | 01-05-2018 | 5
A | 01-06-2018 |
A | 01-07-2018 | 10
A | 01-08-2018 | 11
and convert it to the following
Group | TS | Value>
____________________________
A | 01-01-2018 | 1
A | 01-02-2018 | 2
A | 01-03-2018 | 3
A | 01-04-2018 | 4
A | 01-05-2018 | 5
A | 01-06-2018 | 7.5
A | 01-07-2018 | 10
A | 01-08-2018 | 11
If you can help that would be greatly appreciated.
I have implemented a solution working for Spark 2.2, mainly based on window functions. Hope could still help someone other!
First, let's recreate the dataframe:
from pyspark.sql import functions as F
from pyspark.sql import Window
data = [
("A","01-01-2018",1),
("A","01-02-2018",2),
("A","01-03-2018",None),
("A","01-04-2018",None),
("A","01-05-2018",5),
("A","01-06-2018",None),
("A","01-07-2018",10),
("A","01-08-2018",11)
]
df = spark.createDataFrame(data,['Group','TS','Value'])
df = df.withColumn('TS',F.unix_timestamp('TS','MM-dd-yyyy').cast('timestamp'))
Now, the function:
def fill_linear_interpolation(df,id_cols,order_col,value_col):
"""
Apply linear interpolation to dataframe to fill gaps.
:param df: spark dataframe
:param id_cols: string or list of column names to partition by the window function
:param order_col: column to use to order by the window function
:param value_col: column to be filled
:returns: spark dataframe updated with interpolated values
"""
# create row number over window and a column with row number only for non missing values
w = Window.partitionBy(id_cols).orderBy(order_col)
new_df = new_df.withColumn('rn',F.row_number().over(w))
new_df = new_df.withColumn('rn_not_null',F.when(F.col(value_col).isNotNull(),F.col('rn')))
# create relative references to the start value (last value not missing)
w_start = Window.partitionBy(id_cols).orderBy(order_col).rowsBetween(Window.unboundedPreceding,-1)
new_df = new_df.withColumn('start_val',F.last(value_col,True).over(w_start))
new_df = new_df.withColumn('start_rn',F.last('rn_not_null',True).over(w_start))
# create relative references to the end value (first value not missing)
w_end = Window.partitionBy(id_cols).orderBy(order_col).rowsBetween(0,Window.unboundedFollowing)
new_df = new_df.withColumn('end_val',F.first(value_col,True).over(w_end))
new_df = new_df.withColumn('end_rn',F.first('rn_not_null',True).over(w_end))
# create references to gap length and current gap position
new_df = new_df.withColumn('diff_rn',F.col('end_rn')-F.col('start_rn'))
new_df = new_df.withColumn('curr_rn',F.col('diff_rn')-(F.col('end_rn')-F.col('rn')))
# calculate linear interpolation value
lin_interp_func = (F.col('start_val')+(F.col('end_val')-F.col('start_val'))/F.col('diff_rn')*F.col('curr_rn'))
new_df = new_df.withColumn(value_col,F.when(F.col(value_col).isNull(),lin_interp_func).otherwise(F.col(value_col)))
keep_cols = id_cols + [order_col,value_col]
new_df = new_df.select(keep_cols)
return new_df
Finally:
new_df = fill_linear_interpolation(df=df,id_cols='Group',order_col='TS',value_col='Value')
#+-----+-------------------+-----+
#|Group| TS|Value|
#+-----+-------------------+-----+
#| A|2018-01-01 00:00:00| 1.0|
#| A|2018-01-02 00:00:00| 2.0|
#| A|2018-01-03 00:00:00| 3.0|
#| A|2018-01-04 00:00:00| 4.0|
#| A|2018-01-05 00:00:00| 5.0|
#| A|2018-01-06 00:00:00| 7.5|
#| A|2018-01-07 00:00:00| 10.0|
#| A|2018-01-08 00:00:00| 11.0|
#+-----+-------------------+-----+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With