I am using Pyspark with Python 2.7. I have a date column in string (with ms) and would like to convert to timestamp
This is what I have tried so far
df = df.withColumn('end_time', from_unixtime(unix_timestamp(df.end_time, '%Y-%M-%d %H:%m:%S.%f')) )
printSchema()
shows
end_time: string (nullable = true)
when I expended timestamp as the type of variable
PySpark to_timestamp() – Convert String to Timestamp typeUse <em>to_timestamp</em>() function to convert String to Timestamp (TimestampType) in PySpark. The converted time would be in a default format of MM-dd-yyyy HH:mm:ss.
In PySpark SQL, unix_timestamp() is used to get the current time and to convert the time string in a format yyyy-MM-dd HH:mm:ss to Unix timestamp (in seconds) and from_unixtime() is used to convert the number of seconds from Unix epoch ( 1970-01-01 00:00:00 UTC ) to a string representation of the timestamp.
The to_date() function in Apache PySpark is popularly used to convert Timestamp to the date. This is mostly achieved by truncating the Timestamp column's time part. The to_date() function takes TimeStamp as it's input in the default format of "MM-dd-yyyy HH:mm:ss. SSS".
We can use either to_timestamp, from_unixtime(unix_timestamp()) functions for this case. Try with "yyyy-MM-dd'T'hh:mm'Z'" enclosing T , Z in single quotes!
Try using from_utc_timestamp
:
from pyspark.sql.functions import from_utc_timestamp
df = df.withColumn('end_time', from_utc_timestamp(df.end_time, 'PST'))
You'd need to specify a timezone for the function, in this case I chose PST
If this does not work please give us an example of a few rows showing df.end_time
Create a sample dataframe with Time-stamp formatted as string:
import pyspark.sql.functions as F
df = spark.createDataFrame([('22-Jul-2018 04:21:18.792 UTC', ),('23-Jul-2018 04:21:25.888 UTC',)], ['TIME'])
df.show(2,False)
df.printSchema()
Output:
+----------------------------+
|TIME |
+----------------------------+
|22-Jul-2018 04:21:18.792 UTC|
|23-Jul-2018 04:21:25.888 UTC|
+----------------------------+
root
|-- TIME: string (nullable = true)
Converting string time-format (including milliseconds ) to unix_timestamp(double). Since unix_timestamp() function excludes milliseconds we need to add it using another simple hack to include milliseconds. Extracting milliseconds from string using substring method (start_position = -7, length_of_substring=3) and Adding milliseconds seperately to unix_timestamp. (Cast to substring to float for adding)
df1 = df.withColumn("unix_timestamp",F.unix_timestamp(df.TIME,'dd-MMM-yyyy HH:mm:ss.SSS z') + F.substring(df.TIME,-7,3).cast('float')/1000)
Converting unix_timestamp(double) to timestamp datatype in Spark.
df2 = df1.withColumn("TimestampType",F.to_timestamp(df1["unix_timestamp"]))
df2.show(n=2,truncate=False)
This will give you following output
+----------------------------+----------------+-----------------------+
|TIME |unix_timestamp |TimestampType |
+----------------------------+----------------+-----------------------+
|22-Jul-2018 04:21:18.792 UTC|1.532233278792E9|2018-07-22 04:21:18.792|
|23-Jul-2018 04:21:25.888 UTC|1.532319685888E9|2018-07-23 04:21:25.888|
+----------------------------+----------------+-----------------------+
Checking the Schema:
df2.printSchema()
root
|-- TIME: string (nullable = true)
|-- unix_timestamp: double (nullable = true)
|-- TimestampType: timestamp (nullable = true)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With