I am new to Spark (using PySpark). I tried running the Decision Tree tutorial from here (link). I execute the code:
from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import StringIndexer, VectorIndexer
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.mllib.util import MLUtils
# Load and parse the data file, converting it to a DataFrame.
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
# Now this line fails
featureIndexer =\
VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
I get the error message:
IllegalArgumentException: u'requirement failed: Column features must be of type org.apache.spark.ml.linalg.VectorUDT@3bfc3ba7 but was actually org.apache.spark.mllib.linalg.VectorUDT@f71b0bce.'
When searching the web for this error I found an answer that says:
use
from pyspark.ml.linalg import Vectors, VectorUDT
instead offrom pyspark.mllib.linalg import Vectors, VectorUDT
which is odd, since I haven't used it. Also, adding this import to my code solves nothing and I still get the same error.
I am not quite clear on how to debug this situation. When looking into the raw data I see:
data.show()
+--------------------+-----+
| features|label|
+--------------------+-----+
|(692,[127,128,129...| 0.0|
|(692,[158,159,160...| 1.0|
|(692,[124,125,126...| 1.0|
|(692,[152,153,154...| 1.0|
This looks like a list, starts with '('.
I am not sure how to solve this issue, or even debug.
The source of the problem seems to be executing spark 1.5.2. example on spark 2.0.0 (see below reference to spark 2.0 example).
The difference between spark.ml and spark.mllib
As of Spark 2.0, the RDD-based APIs in the spark.mllib package have entered maintenance mode. The primary Machine Learning API for Spark is now the DataFrame-based API in the spark.ml package.
More details can be found here: http://spark.apache.org/docs/latest/ml-guide.html
Using spark 2.0 please try Spark 2.0.0 example (https://spark.apache.org/docs/2.0.0/mllib-decision-tree.html)
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils
# Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
# Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = data.randomSplit([0.7, 0.3])
# Train a DecisionTree model.
# Empty categoricalFeaturesInfo indicates all features are continuous.
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32)
# Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count())
print('Test Error = ' + str(testErr))
print('Learned classification tree model:')
print(model.toDebugString())
# Save and load model
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
Find full example code at "examples/src/main/python/mllib/decision_tree_classification_example.py" in the Spark repo.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With