According to the accepted answer in pyspark collect_set or collect_list with groupby, when you do a collect_list
on a certain column, the null
values in this column are removed. I have checked and this is true.
But in my case, I need to keep the null columns -- How can I achieve this?
I did not find any info on this kind of a variant of collect_list
function.
Background context to explain why I want nulls:
I have a dataframe df
as below:
cId | eId | amount | city
1 | 2 | 20.0 | Paris
1 | 2 | 30.0 | Seoul
1 | 3 | 10.0 | Phoenix
1 | 3 | 5.0 | null
I want to write this to an Elasticsearch index with the following mapping:
"mappings": {
"doc": {
"properties": {
"eId": { "type": "keyword" },
"cId": { "type": "keyword" },
"transactions": {
"type": "nested",
"properties": {
"amount": { "type": "keyword" },
"city": { "type": "keyword" }
}
}
}
}
}
In order to conform to the nested mapping above, I transformed my df so that for each combination of eId and cId, I have an array of transactions like this:
df_nested = df.groupBy('eId','cId').agg(collect_list(struct('amount','city')).alias("transactions"))
df_nested.printSchema()
root
|-- cId: integer (nullable = true)
|-- eId: integer (nullable = true)
|-- transactions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- amount: float (nullable = true)
| | |-- city: string (nullable = true)
Saving df_nested
as a json file, there are the json records that I get:
{"cId":1,"eId":2,"transactions":[{"amount":20.0,"city":"Paris"},{"amount":30.0,"city":"Seoul"}]}
{"cId":1,"eId":3,"transactions":[{"amount":10.0,"city":"Phoenix"},{"amount":30.0}]}
As you can see - when cId=1
and eId=3
, one of my array elements where amount=30.0
does not have the city
attribute because this was a null
in my original data (df
). The nulls are being removed when I use the collect_list
function.
However, when I try writing df_nested to elasticsearch with the above index, it errors because there is a schema mismatch. This is basically the reason as to why I want to retain my nulls after applying the collect_list
function.
from pyspark.sql.functions import create_map, collect_list, lit, col, to_json, from_json
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, HiveContext, SparkSession, types, Row
from pyspark.sql import functions as f
import os
app_name = "CollList"
conf = SparkConf().setAppName(app_name)
spark = SparkSession.builder.appName(app_name).config(conf=conf).enableHiveSupport().getOrCreate()
df = spark.createDataFrame([[1, 2, 20.0, "Paris"], [1, 2, 30.0, "Seoul"],
[1, 3, 10.0, "Phoenix"], [1, 3, 5.0, None]],
["cId", "eId", "amount", "city"])
print("Actual data")
df.show(10,False)
```
Actual data
+---+---+------+-------+
|cId|eId|amount|city |
+---+---+------+-------+
|1 |2 |20.0 |Paris |
|1 |2 |30.0 |Seoul |
|1 |3 |10.0 |Phoenix|
|1 |3 |5.0 |null |
+---+---+------+-------+
```
#collect_list that skips null columns
df1 = df.groupBy(f.col('city'))\
.agg(f.collect_list(f.to_json(f.struct([f.col(x).alias(x) for x in (c for c in df.columns if c != 'cId' and c != 'eId' )])))).alias('newcol')
print("Collect List Data - Missing Null Columns in the list")
df1.show(10, False)
```
Collect List Data - Missing Null Columns in the list
+-------+-------------------------------------------------------------------------------------------------------------------+
|city |collect_list(structstojson(named_struct(NamePlaceholder(), amount AS `amount`, NamePlaceholder(), city AS `city`)))|
+-------+-------------------------------------------------------------------------------------------------------------------+
|Phoenix|[{"amount":10.0,"city":"Phoenix"}] |
|null |[{"amount":5.0}] |
|Paris |[{"amount":20.0,"city":"Paris"}] |
|Seoul |[{"amount":30.0,"city":"Seoul"}] |
+-------+-------------------------------------------------------------------------------------------------------------------+
```
my_list = []
for x in (c for c in df.columns if c != 'cId' and c != 'eId' ):
my_list.append(lit(x))
my_list.append(col(x))
grp_by = ["eId","cId"]
df_nested = df.withColumn("transactions", create_map(my_list))\
.groupBy(grp_by)\
.agg(collect_list(f.to_json("transactions")).alias("transactions"))
print("collect list after create_map")
df_nested.show(10,False)
```
collect list after create_map
+---+---+--------------------------------------------------------------------+
|eId|cId|transactions |
+---+---+--------------------------------------------------------------------+
|2 |1 |[{"amount":"20.0","city":"Paris"}, {"amount":"30.0","city":"Seoul"}]|
|3 |1 |[{"amount":"10.0","city":"Phoenix"}, {"amount":"5.0","city":null}] |
+---+---+--------------------------------------------------------------------+
```
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With