I am using PyOpenCL to process images in Python and to send a 3D numpy array (height
x width
x 4
) to the kernel. I am having trouble indexing the 3D array inside the kernel code. For now I am only able to copy the whole input array to the output. The current code looks like this, where img
is the image with img.shape = (320, 512, 4)
:
__kernel void part1(__global float* img, __global float* results)
{
unsigned int x = get_global_id(0);
unsigned int y = get_global_id(1);
unsigned int z = get_global_id(2);
int index = x + 320*y + 320*512*z;
results[index] = img[index];
}
However, I do not quite understand how this work. For example, how do I index the Python equivalent of img[1, 2, 3]
inside this kernel? And further, which index should be used into results
for storing some item if I want it to be on the position results[1, 2, 3]
in the numpy array when I get the results back to Python?
To run this I am using this Python code:
import pyopencl as cl
import numpy as np
class OpenCL:
def __init__(self):
self.ctx = cl.create_some_context()
self.queue = cl.CommandQueue(self.ctx)
def loadProgram(self, filename):
f = open(filename, 'r')
fstr = "".join(f.readlines())
self.program = cl.Program(self.ctx, fstr).build()
def opencl_energy(self, img):
mf = cl.mem_flags
self.img = img.astype(np.float32)
self.img_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.img)
self.dest_buf = cl.Buffer(self.ctx, mf.WRITE_ONLY, self.img.nbytes)
self.program.part1(self.queue, self.img.shape, None, self.img_buf, self.dest_buf)
c = np.empty_like(self.img)
cl.enqueue_read_buffer(self.queue, self.dest_buf, c).wait()
return c
example = OpenCL()
example.loadProgram("get_energy.cl")
image = np.random.rand(320, 512, 4)
image = image.astype(np.float32)
results = example.opencl_energy(image)
print("All items are equal:", (results==image).all())
Update: The OpenCL docs state (in 3.5), that
"Memory objects are categorized into two types: buffer objects, and image objects. A buffer
object stores a one-dimensional collection of elements whereas an image object is used to store a
two- or three- dimensional texture, frame-buffer or image."
so, a buffer always is linear, or linearized as you can see from my sample below.
import pyopencl as cl
import numpy as np
h_a = np.arange(27).reshape((3,3,3)).astype(np.float32)
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
d_a = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_a)
prg = cl.Program(ctx, """
__kernel void p(__global const float *d_a) {
printf("Array element is %f ",d_a[10]);
}
""").build()
prg.p(queue, (1,), None, d_a)
Gives me
"Array element is 10"
as output. So, the buffer actually is the linearized array. Nevertheless, the naive [x,y,z] approach known from numpy doesn't work that way. Using an 2 or 3-D Image instead of a buffer should work nevertheless.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With