Say I wanted to write an algorithm working on an immutable tree data structure that has a list of leaves as its input. It needs to return a new tree with changes made to the old tree going upwards from those leaves.
My problem is that there seems to be no way to do this purely functional without reconstructing the entire tree checking at leaves if they are in the list, because you always need to return a complete new tree as the result of an operation and you can't mutate the existing tree.
Is this a basic problem in functional programming that only can be avoided by using a better suited algorithm or am I missing something?
Edit: I not only want to avoid to recreate the entire tree but also the functional algorithm should have the same time complexity than the mutating variant.
The most promising I have seen so far (which admittedly is not very long...) is the Zipper data structure: It basically keeps a separate structure, a reverse path from the node to root, and does local edits on this separate structure.
It can do multiple local edits, most of which are constant time, and write them back to the tree (reconstructing the path to root, which are the only nodes that need to change) all in one go.
The Zipper is a standard library in Clojure (see the heading Zippers - Functional Tree Editing).
And there's the original paper by Huet with an implementation in OCaml.
Disclaimer: I have been programming for a long time, but only started functional programming a couple of weeks ago, and had never even heard of the problem of functional editing of trees until last week, so there may very well be other solutions I'm unaware of.
Still, it looks like the Zipper does most of what one could wish for. If there are other alternatives at O(log n) or below, I'd like to hear them.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With