We are currently building an SDK for a customer using CocoaPods.
The main problem we have is that our boss would like the SDK to be a black box. He wants us to precompile the code in order to protect our source.
Is there anything we can do within the Podspec in order to protect our code?
Distributing compiled framework through CocoapodsCreate a git repository to hold Cocoapods specifications files in our home directory. Create a git repository in our home directory to hold the compiled MyFramework. Create and push MyFramework specification to our Cocoapods specification repository created in step 1.
You can do exactly that by creating a Static Framework
and including it in the spec.vendored_frameworks
property on your podspec.
http://guides.cocoapods.org/syntax/podspec.html#vendored_frameworks
Follow the tutorial below for how to create your own static framework.
https://github.com/jverkoey/iOS-Framework#walkthrough
There are a few constraints that we want to satisfy when building a .framework:
I believe that the solution I will outline below satisfies each of these constraints. I will outline how to build a .framework project from scratch so that you can apply these steps to an existing project if you so desire. I will also include project templates for easily creating a .framework.
View a sample project that shows the result of following these steps in the
sample/Serenity
directory.
Within the project we are going to have three targets: a static library, a bundle, and an aggregate.
The static library target will build the source into a static library (.a) and specify which headers will be "public", meaning they will be accessible from the .framework when we distribute it.
The bundle target will contain all of our resources and will be loadable from the framework.
The aggregate target will build the static library for i386/armv6/armv7/armv7s, generate the fat framework binary, and also build the bundle. You will run this target when you plan to distribute the .framework.
When you are working on the framework you will likely have an internal application that links to the framework. This application will link to the static library target as you normally would and copy the .bundle in the copy resources phase. This has the benefit of only building the framework code for the platform you're actively working on, significantly improving your build times. We'll do a little bit of work in the framework project to ensure that you can use your framework in your app the same way a third party developer would (i.e. importing should work as expected). Jump to the dependent project walkthrough.
The product name will be the name of your framework. For example, Serenity
will generate
Serenity.framework
once we've set up the project.
Developers expect to be able to import your framework by importing the <Serenity/Serenity.h>
header. Ensure that your project has such a header (if you created a new static library then there
should already be a Serenity.h and Serenity.m file; you can delete the .m).
Within this header you are going to import all of the public headers for your framework. For
example, let's assume that we have some Widget
with a .h and .m. Our Serenity.h file would look
like this:
#import <Foundation/Foundation.h>
#import <Serenity/Widget.h>
Once you've created your framework header file, you need to make it a "public" header. Public headers are headers that will be copied to the .framework and can be imported by those using your framework. This differs from "project" headers which will not be distributed with the framework. This distinction is what allows you to have a concept of public and private APIs.
To change a file's [target membership visibility in XCode 4.4+] (Can't change target membership visibility in Xcode 4.5), you'll need to select the Static Library target you created (Serenity), open the Build Phases tab:
Xcode 4.X: Click on Add Build Phase > Add Copy Headers.
Xcode 5: Add Build Phases from the menu. Click on Editor > Add Build Phase -> Add Copy Headers Build Phase. Note: If the menu options are grayed out, you'll need to click on the whitespace below the Build Phases to regain focus and retry.
You'll see 3 sections for Public, Private, and Project headers. To modify the scope of any header, drag and drop the header files between the sections. Alternatively you can open the Project Navigator and select the header. Next expand the Utilities pane for the File Inspector. (Cmd+Option+0).
Look at the "Target Membership" group and ensure that the checkbox next to the .h file is checked. Change the scope of the header from "Project" to "Public". You might have to uncheck and check the box to get the dropdown list. This will ensure that the header gets copied to the correct location in the copy headers phase.
By default the static library project will copy private and public headers to the same folder:
/usr/local/include
. To avoid mistakenly copying private headers to our framework we want to ensure
that our public headers are copied to a separate directory, e.g. $(PROJECT_NAME)Headers
. To change this setting,
select the project in the Project Navigator and then click the "Build Settings" tab. Search for "public
headers" and then set the "Public Headers Folder Path" to "$(PROJECT_NAME)Headers" for all configurations.
If you are working with multiple Frameworks make sure that this folder is unique.
Whenever you add new source to the framework you must decide whether to expose the .h publicly or not. To modify a header's scope you will follow the same process as Step 2. By default a header's scope will be "Project", meaning it will not be copied to the framework's public headers.
We do not want to strip any code from the library; we leave this up to the application that is linking to the framework. To disable code stripping we must modify the following configuration settings:
"Dead Code Stripping" => No (for all settings)
"Strip Debug Symbols During Copy" => No (for all settings)
"Strip Style" => Non-Global Symbols (for all settings)
In order to use the static library as though it were a framework we're going to generate the basic skeleton of the framework in the static library target. To do this we'll include a simple post-build script. Add a post-build script by selecting your project in the Project Navigator, selecting the target, and then the "Build Phases" tab.
Xcode 4.X: Click Add Build Phase > Add Run Script
Xcode 5: Select Editor menu > Add Build Phase > Add Run Script Build Phase
Paste the following script in the source portion of the run script build phase. You can rename the phase by clicking the title of the phase (I've named it "Prepare Framework", for example).
prepare_framework.shset -e
mkdir -p "${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}.framework/Versions/A/Headers"
# Link the "Current" version to "A"
/bin/ln -sfh A "${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}.framework/Versions/Current"
/bin/ln -sfh Versions/Current/Headers "${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}.framework/Headers"
/bin/ln -sfh "Versions/Current/${PRODUCT_NAME}" "${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}.framework/${PRODUCT_NAME}"
# The -a ensures that the headers maintain the source modification date so that we don't constantly
# cause propagating rebuilds of files that import these headers.
/bin/cp -a "${TARGET_BUILD_DIR}/${PUBLIC_HEADERS_FOLDER_PATH}/" "${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}.framework/Versions/A/Headers"
This will generate the following folder structure:
-- Note: "->" denotes a symbolic link --
Serenity.framework/
Headers/ -> Versions/Current/Headers
Serenity -> Versions/Current/Serenity
Versions/
A/
Headers/
Serenity.h
Widget.h
Current -> A
Try building your project now and look at the build products directory (usually
~/Library/Developer/Xcode/DerivedData/<ProjectName>-<gibberish>/Build/Products/...
). You should
see a libSerenity.a
static library, a Headers
folder, and a Serenity.framework
folder that
contains the basic skeleton of your framework.
When actively developing the framework we only care to build the platform that we're testing on. For example, if we're testing on the iPhone simulator then we only need to build the i386 platform.
This changes when we want to distribute the framework to third party developers. The third-party developers don't have the option of rebuilding the framework for each platform, so we must provide what is called a "fat binary" version of the static library that is comprised of the possible platforms. These platforms include: i386, armv6, armv7, and armv7s.
To generate this fat binary we're going to build the static library target for each platform.
Click File > New Target > iOS > Other and create a new Aggregate target. Title it something like "Framework".
Add the static library target to the "Target Dependencies".
To build the other platform we're going to use a "Run Script" phase to execute some basic commands. Add a new "Run Script" build phase to your aggregate target and paste the following code into it.
build_framework.shset -e
set +u
# Avoid recursively calling this script.
if [[ $SF_MASTER_SCRIPT_RUNNING ]]
then
exit 0
fi
set -u
export SF_MASTER_SCRIPT_RUNNING=1
SF_TARGET_NAME=${PROJECT_NAME}
SF_EXECUTABLE_PATH="lib${SF_TARGET_NAME}.a"
SF_WRAPPER_NAME="${SF_TARGET_NAME}.framework"
# The following conditionals come from
# https://github.com/kstenerud/iOS-Universal-Framework
if [[ "$SDK_NAME" =~ ([A-Za-z]+) ]]
then
SF_SDK_PLATFORM=${BASH_REMATCH[1]}
else
echo "Could not find platform name from SDK_NAME: $SDK_NAME"
exit 1
fi
if [[ "$SDK_NAME" =~ ([0-9]+.*$) ]]
then
SF_SDK_VERSION=${BASH_REMATCH[1]}
else
echo "Could not find sdk version from SDK_NAME: $SDK_NAME"
exit 1
fi
if [[ "$SF_SDK_PLATFORM" = "iphoneos" ]]
then
SF_OTHER_PLATFORM=iphonesimulator
else
SF_OTHER_PLATFORM=iphoneos
fi
if [[ "$BUILT_PRODUCTS_DIR" =~ (.*)$SF_SDK_PLATFORM$ ]]
then
SF_OTHER_BUILT_PRODUCTS_DIR="${BASH_REMATCH[1]}${SF_OTHER_PLATFORM}"
else
echo "Could not find platform name from build products directory: $BUILT_PRODUCTS_DIR"
exit 1
fi
# Build the other platform.
xcrun xcodebuild -project "${PROJECT_FILE_PATH}" -target "${TARGET_NAME}" -configuration "${CONFIGURATION}" -sdk ${SF_OTHER_PLATFORM}${SF_SDK_VERSION} BUILD_DIR="${BUILD_DIR}" OBJROOT="${OBJROOT}" BUILD_ROOT="${BUILD_ROOT}" SYMROOT="${SYMROOT}" $ACTION
# Smash the two static libraries into one fat binary and store it in the .framework
xcrun lipo -create "${BUILT_PRODUCTS_DIR}/${SF_EXECUTABLE_PATH}" "${SF_OTHER_BUILT_PRODUCTS_DIR}/${SF_EXECUTABLE_PATH}" -output "${BUILT_PRODUCTS_DIR}/${SF_WRAPPER_NAME}/Versions/A/${SF_TARGET_NAME}"
# Copy the binary to the other architecture folder to have a complete framework in both.
cp -a "${BUILT_PRODUCTS_DIR}/${SF_WRAPPER_NAME}/Versions/A/${SF_TARGET_NAME}" "${SF_OTHER_BUILT_PRODUCTS_DIR}/${SF_WRAPPER_NAME}/Versions/A/${SF_TARGET_NAME}"
Important Note
The above script assumes that your library name matches your project name in the following line:
SF_TARGET_NAME=${PROJECT_NAME}
If this is not the case (e.g. your xcode project is named SerenityFramework and the target name is Serenity) then you need to explicitly set the target name on that line. For example:
SF_TARGET_NAME=Serenity
You now have everything set up to build a distributable .framework to third-party developers. Try
building the aggregate target. Once it's done, expand the Products folder in Xcode, right click the
static library and click "Show in Finder". If this doesn't open Finder to where the static library
exists then try opening
~/Library/Developer/Xcode/DerivedData/<project name>/Build/Products/Debug-iphonesimulator/
.
Within this folder you will see your .framework folder.
You can now drag the .framework elsewhere, zip it up, upload it, and distribute it to your third-party developers.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With