I am trying to prove something simple:
open import Data.List
open import Data.Nat
open import Data.Bool
open import Data.Bool.Properties
open import Relation.Binary.PropositionalEquality
open import Data.Unit
repeat : ∀ {a} {A : Set a} → ℕ → A → List A
repeat zero x = []
repeat (suc n) x = x ∷ repeat n x
filter-repeat : ∀ {a} {A : Set a} → (p : A → Bool) → (x : A) → T (p x) → ∀ n →
filter p (repeat n x) ≡ repeat n x
I thought proving filter-repeat
is going to be easy by pattern matching on p x
:
filter-repeat p x prf zero = refl
filter-repeat p x prf (suc n) with p x
filter-repeat p x () (suc n) | false
filter-repeat p x prf (suc n) | true = cong (_∷_ x) (filter-repeat p x prf n)
However this complains that prf : ⊤
is not of type T (p x)
. So I thought, OK, this seems like a familiar problem, let's whip out inspect
:
filter-repeat p x prf zero = refl
filter-repeat p x prf (suc n) with p x | inspect p x
filter-repeat p x () (suc n) | false | _
filter-repeat p x tt (suc n) | true | [ eq ] rewrite eq = cong (_∷_ x) (filter-repeat p x {!!} n)
but despite the rewrite
, the type of the hole is still T (p x)
instead of T true
. Why is that? How do I reduce its type to T true
so I can fill it with tt
?
Workaround
I was able to work around it by using T-≡
:
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
filter-repeat : ∀ {a} {A : Set a} → (p : A → Bool) → (x : A) → T (p x) → ∀ n →
filter p (repeat n x) ≡ repeat n x
filter-repeat p x prf zero = refl
filter-repeat p x prf (suc n) with p x | inspect p x
filter-repeat p x () (suc n) | false | _
filter-repeat p x tt (suc n) | true | [ eq ] = cong (_∷_ x) (filter-repeat p x (Equivalence.from T-≡ ⟨$⟩ eq) n)
but I would still like to understand why the inspect
-based solution doesn't work.
As András Kovács says the inductive case requires prf
to be of type T (p x)
while you've already changed it to just ⊤
by pattern matching on p x
. One simple solution is just to call filter-repeat
recursively before pattern matching on p x
:
open import Data.Empty
filter-repeat : ∀ {a} {A : Set a} → (p : A → Bool) → (x : A) → T (p x) → ∀ n →
filter p (repeat n x) ≡ repeat n x
filter-repeat p x prf 0 = refl
filter-repeat p x prf (suc n) with filter-repeat p x prf n | p x
... | r | true = cong (x ∷_) r
... | r | false = ⊥-elim prf
It also can sometimes be useful to use the protect pattern:
data Protect {a} {A : Set a} : A → Set where
protect : ∀ x → Protect x
filter-repeat : ∀ {a} {A : Set a} → (p : A → Bool) → (x : A) → T (p x) → ∀ n →
filter p (repeat n x) ≡ repeat n x
filter-repeat p x q 0 = refl
filter-repeat p x q (suc n) with protect q | p x | inspect p x
... | _ | true | [ _ ] = cong (x ∷_) (filter-repeat p x q n)
... | _ | false | [ r ] = ⊥-elim (subst T r q)
protect q
saves the type of q
from being rewritten, but it also means that in the false
case the type of q
is still T (p x)
rather than ⊥
, hence the additional inspect
.
Another variant of the same idea is
module _ {a} {A : Set a} (p : A → Bool) (x : A) (prf : T (p x)) where
filter-repeat : ∀ n → filter p (repeat n x) ≡ repeat n x
filter-repeat 0 = refl
filter-repeat (suc n) with p x | inspect p x
... | true | [ r ] = cong (x ∷_) (filter-repeat n)
... | false | [ r ] = ⊥-elim (subst T r prf)
module _ ... (prf : T (p x)) where
prevents the type of prf
from being rewritten as well.
Dependent pattern matching only affects the goal and the context at the exact point of their use. Matching on p x
rewrites the current context and reduces the type of prf
to ⊤
in the true
branch.
However, when you do the recursive filter-repeat
call, you once again supply x
as argument there, and T (p x)
in filter-repeat
depends on that x
, not the old one in the outer context, even though they're definitionally equal. We could've passed something other than x
, hypothetically, so no assumption can be made about it before the filter-repeat
call.
x
can be made invariant in the context by factoring it out from the induction:
open import Data.Empty
filter-repeat : ∀ {a} {A : Set a} → (p : A → Bool) → (x : A) → T (p x) → ∀ n →
filter p (repeat n x) ≡ repeat n x
filter-repeat p x prf = go where
go : ∀ n → filter p (repeat n x) ≡ repeat n x
go zero = refl
go (suc n) with p x | inspect p x
go (suc n) | true | [ eq ] = cong (_∷_ x) (go n)
go (suc n) | false | [ eq ] = ⊥-elim (subst T eq prf)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With