I'm working on a project using Isabelle.
For some reason I have to simulate a bit/byte system, like this:
type_synonym bit = bool
datatype byte = B bit bit bit bit bit bit bit bit
fun byte_inc :: "byte => byte" where
"byte_inc (B a7 a6 a5 a4 a3 a2 a1 False) = (B a7 a6 a5 a4 a3 a2 a1 True)" |
"byte_inc (B a7 a6 a5 a4 a3 a2 False True) = (B a7 a6 a5 a4 a3 a2 True False)" |
"byte_inc (B a7 a6 a5 a4 a3 False True True) = (B a7 a6 a5 a4 a3 True False False)" |
"byte_inc (B a7 a6 a5 a4 False True True True) = (B a7 a6 a5 a4 True False False False)" |
"byte_inc (B a7 a6 a5 False True True True True) = (B a7 a6 a5 True False False False False)" |
"byte_inc (B a7 a6 False True True True True True) = (B a7 a6 True False False False False False)" |
"byte_inc (B a7 False True True True True True True) = (B a7 True False False False False False False)" |
"byte_inc (B False True True True True True True True) = (B True False False False False False False False)" |
"byte_inc (B True True True True True True True True) = (B False False False False False False False False)"
lemma [simp]: "b ≠ byte_inc b"
sorry
I use (B T T T T T T T T) to represent (11111111), (B F F F F F F F F) to represent (00000000).
But I can not prove such an obvious lemma: b != b + 1
I really need some help.
You should also take a look at the existing library for machine words over bits: $ISABELLE_HOME/src/HOL/Word/Word.thy
That is quite advanced stuff, though, but for real applications it is worth investing time to figure out how it works.
You will need to make a case distinction over the parameter b so that you can apply the simp rules for byte_inc. Just do "by (cases b rule: byte_inc.cases, simp_all)"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With