Based on the answer provided in1088639, I set up a pair of functions which both access the same sub-function's environment. This example works, but I wanted to see if I'd missed some cleaner way to "connect" both top-level functions to the internal environment.
( Back story: I wanted to write a pair of complementary functions which shared a variable, e.g. "count" in this example, and meet CRAN package requirements which do not allow functions to modify the global environment. )
static.f <- function() {
count <- 0
f <- function(x) {
count <<- count + 1
return( list(mean=mean(x), count=count) )
}
return( f )
}
# make sure not to delete this command, even tho' it's not
# creating a function.
f1 <- static.f()
statfoo <- function(x){
tmp<-f1(x)
tmp<- list(tmp,plus=2)
return(tmp)
}
statbar <- function(x){
tmp<-f1(x)
tmp<- list(tmp,minus=3)
return(tmp)
}
Sample output:
> statfoo(5)
[[1]]
[[1]]$mean
[1] 5
[[1]]$count
[1] 1
$plus
[1] 2
Rgames> statfoo(5)
[[1]]
[[1]]$mean
[1] 5
[[1]]$count
[1] 2
$plus
[1] 2
> statbar(4)
[[1]]
[[1]]$mean
[1] 4
[[1]]$count
[1] 3
$minus
[1] 3
> statfoo(5)
[[1]]
[[1]]$mean
[1] 5
[[1]]$count
[1] 4
$plus
[1] 2
A cleaner method would be to use an object oriented approach. There is already an answer using reference classes.
A typical object oriented approach with classes would create a class and then create a singleton object, i.e. a single object of that class. Of course it is a bit wasteful to create a class only to create one object from it so here we provide a proto example. (Creating a function to enclose count
and the function doing the real work has a similar problem -- you create an enclosing function only to run it once.) The proto model allows one to create an object directly bypassing the need to create a class only to use it once. Here foobar
is the proto object with property count
and methods stats
, statfoo
and statbar
. Note that we factored out stats
to avoid duplicating its code in each of statfoo
and statbar
. (continued further down)
library(proto)
foobar <- proto(count = 0,
stats = function(., x) {
.$count <- .$count + 1
list(mean = mean(x), count = .$count)
},
statfoo = function(., x) c(.$stats(x), plus = 2),
statbar = function(., x) c(.$stats(x), plus = 3)
)
foobar$statfoo(1:3)
foobar$statbar(2:4)
giving:
> foobar$statfoo(1:3)
$mean
[1] 2
$count
[1] 1
$plus
[1] 2
> foobar$statbar(2:4)
$mean
[1] 3
$count
[1] 2
$plus
[1] 3
A second design would be to have statfoo
and statbar
as independent functions and only keep count
and stats
in foobar
(continued further down)
library(proto)
foobar <- proto(count = 0,
stats = function(., x) {
.$count <- .$count + 1
list(mean = mean(x), count = .$count)
}
)
statfoo <- function(x) c(foobar$stats(x), plus = 2)
statbar <- function(x) c(foobar$stats(x), plus = 3)
statfoo(1:3)
statbar(2:4)
giving similar output to the prior example.
Third approach Of course the second variation could easily be implemented by using local
and a function getting us close to where you started. This does not use any packages but does not create a function only to throw it away:
foobar <- local({
count <- 0
function(x) {
count <<- count + 1
list(mean = mean(x), count = count)
}
})
statfoo <- function(x) c(foobar(x), plus = 2)
statbar <- function(x) c(foobar(x), plus = 3)
statfoo(1:3)
statbar(2:4)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With