I am currently writing a solver for a floor planning problem in Prolog and have some issues with the labeling part.
The current problem is my constraints are posted but when I launch the labeling, it takes forever to find a solution. I would like to bring in some heuristics.
My question is, how do I manually label my variables ? I am afraid that after defining a clpfd variable like this :
X in Xinf..Xsup
and constraining it, If I do something like :
fd_sup(X, Xmax),
X = Xmax,
...
in my custom label, I won't be using the backtrack ability of Prolog to test the other values of X's domain. Am I wrong ?
Also, is there a smarter way to label my variables than writing custom labeling procedures ? My idea of heuristics would consist in trying extrema of a variable domain alternatively (like max(X), min(X), max(X-1), min(X-1) etc...)
Hope you can help me :)
It is not difficult to write a custom labeling procedure, and with most real problems you will eventually need one anyway in order to incorporate problem-specific heuristics.
The two main components of a labeling procedure are
Using this scheme, the default labeling procedure can be written as
label(Xs) :-
( select_variable(X, Xs, Xs1) ->
branch(X),
label(Xs1)
;
true % done, no variables left
).
select_variable(X, [X|Xs], Xs). % 'leftmost' strategy
branch(X) :- indomain(X).
You can now redefine select_variable/3
to implement techniques such as "first-fail", and redefine branch/1
to try domain values in different orders. As long as you make sure that branch/1
enumerates all of X
's domain values on backtracking, your search remains complete.
Sometimes you want to try just one domain value first (say, one suggested by a heuristics), but, if it is no good, not commit to another value immediately. Let's say that, as in your example, you want to try the maximum domain value first. You could write this as
branch(X) :-
fd_sup(X, Xmax),
(
X = Xmax % try the maximum
;
X #\= Xmax % otherwise exclude the maximum
).
Because the two cases are complementary and cover all possible values for X, your search is still complete. However, because of the second alternative, branch/1
can now succeed with an uninstantiated X
, which means you must make sure in the labeling procedure that you don't lose this variable from your list. One possibility would be:
label(Xs) :-
( select_variable(X, Xs, Xs1) ->
branch(X),
( var(X) -> append(Xs1, [X], Xs2) ; Xs2=Xs1 ),
label(Xs2)
;
true % done, no variables left
).
First, always try built-in heuristics. ff
is often a good strategy.
For custom labeling strategies, it is often easiest to first convert the domain to a list, then reorder the list, and then simply use member/2
to assign the values of the domain using the new order.
A good building black is dom_integers/2
, relating a finite CLP(FD) domain to a list of integers:
:- use_module(library(clpfd)).
dom_integers(D, Is) :- phrase(dom_integers_(D), Is).
dom_integers_(I) --> { integer(I) }, [I].
dom_integers_(L..U) --> { numlist(L, U, Is) }, Is.
dom_integers_(D1\/D2) --> dom_integers_(D1), dom_integers_(D2).
Your specific strategy is easily expressed on a list of such ordered integers, relating these integers to a second list where the values occur in the order you describe:
outside_in([]) --> [].
outside_in([I]) --> [I].
outside_in([First|Rest0]) --> [First,Last],
{ append(Rest, [Last], Rest0) },
outside_in(Rest).
Sample query and result:
?- phrase(outside_in([1,2,3,4]), Is). Is = [1, 4, 2, 3] ; false.
Combining this with fd_dom/2
and dom_integers/2
, we get (bindings for variables other than X
omitted):
?- X in 10..20,
fd_dom(X, Dom),
dom_integers(Dom, Is0),
phrase(outside_in(Is0), Is),
member(X, Is).
X = 10 ;
X = 20 ;
X = 11 ;
X = 19 ;
X = 12 ;
X = 18 ;
etc.
Nondeterminism is preserved by member/2
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With