I've been trying to rectify and build the disparity mappping for a pair of images using OpenCV stereoRectifyUncalibrated, but I'm not getting very good results. My code is:
template<class T>
T convertNumber(string& number)
{
istringstream ss(number);
T t;
ss >> t;
return t;
}
void readPoints(vector<Point2f>& points, string filename)
{
fstream filest(filename.c_str(), ios::in);
string line;
assert(filest != NULL);
getline(filest, line);
do{
int posEsp = line.find_first_of(' ');
string posX = line.substr(0, posEsp);
string posY = line.substr(posEsp+1, line.size() - posEsp);
float X = convertNumber<float>(posX);
float Y = convertNumber<float>(posY);
Point2f pnt = Point2f(X, Y);
points.push_back(pnt);
getline(filest, line);
}while(!filest.eof());
filest.close();
}
void drawKeypointSequence(Mat lFrame, Mat rFrame, vector<KeyPoint>& lKeyp, vector<KeyPoint>& rKeyp)
{
namedWindow("prevFrame", WINDOW_AUTOSIZE);
namedWindow("currFrame", WINDOW_AUTOSIZE);
moveWindow("prevFrame", 0, 300);
moveWindow("currFrame", 650, 300);
Mat rFrameAux;
rFrame.copyTo(rFrameAux);
Mat lFrameAux;
lFrame.copyTo(lFrameAux);
int size = rKeyp.size();
for(int i=0; i<size; i++)
{
vector<KeyPoint> drawRightKeyp;
vector<KeyPoint> drawleftKeyp;
drawRightKeyp.push_back(rKeyp[i]);
drawleftKeyp.push_back(lKeyp[i]);
cout << rKeyp[i].pt << " <<<>>> " << lKeyp[i].pt << endl;
drawKeypoints(rFrameAux, drawRightKeyp, rFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
drawKeypoints(lFrameAux, drawleftKeyp, lFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
imshow("currFrame", rFrameAux);
imshow("prevFrame", lFrameAux);
waitKey(0);
}
imwrite("RightKeypFrame.jpg", rFrameAux);
imwrite("LeftKeypFrame.jpg", lFrameAux);
}
int main(int argc, char* argv[])
{
StereoBM stereo(StereoBM::BASIC_PRESET, 16*5, 21);
double ndisp = 16*4;
assert(argc == 5);
string rightImgFilename(argv[1]); // Right image (current frame)
string leftImgFilename(argv[2]); // Left image (previous frame)
string rightPointsFilename(argv[3]); // Right image points file
string leftPointsFilename(argv[4]); // Left image points file
Mat rightFrame = imread(rightImgFilename.c_str(), 0);
Mat leftFrame = imread(leftImgFilename.c_str(), 0);
vector<Point2f> rightPoints;
vector<Point2f> leftPoints;
vector<KeyPoint> rightKeyp;
vector<KeyPoint> leftKeyp;
readPoints(rightPoints, rightPointsFilename);
readPoints(leftPoints, leftPointsFilename);
assert(rightPoints.size() == leftPoints.size());
KeyPoint::convert(rightPoints, rightKeyp);
KeyPoint::convert(leftPoints, leftKeyp);
// Desenha os keypoints sequencialmente, de forma a testar a consistência do matching
drawKeypointSequence(leftFrame, rightFrame, leftKeyp, rightKeyp);
Mat fundMatrix = findFundamentalMat(leftPoints, rightPoints, CV_FM_8POINT);
Mat homRight;
Mat homLeft;
Mat disp16 = Mat(rightFrame.rows, leftFrame.cols, CV_16S);
Mat disp8 = Mat(rightFrame.rows, leftFrame.cols, CV_8UC1);
stereoRectifyUncalibrated(leftPoints, rightPoints, fundMatrix, rightFrame.size(), homLeft, homRight);
warpPerspective(rightFrame, rightFrame, homRight, rightFrame.size());
warpPerspective(leftFrame, leftFrame, homLeft, leftFrame.size());
namedWindow("currFrame", WINDOW_AUTOSIZE);
namedWindow("prevFrame", WINDOW_AUTOSIZE);
moveWindow("currFrame", 650, 300);
moveWindow("prevFrame", 0, 300);
imshow("currFrame", rightFrame);
imshow("prevFrame", leftFrame);
imwrite("RectfRight.jpg", rightFrame);
imwrite("RectfLeft.jpg", leftFrame);
waitKey(0);
stereo(rightFrame, leftFrame, disp16, CV_16S);
disp16.convertTo(disp8, CV_8UC1, 255/ndisp);
FileStorage file("disp_map.xml", FileStorage::WRITE);
file << "disparity" << disp8;
file.release();
imshow("disparity", disp8);
imwrite("disparity.jpg", disp8);
moveWindow("disparity", 0, 0);
waitKey(0);
}
drawKeyPoint sequence is the way I visually check the consistency of the points I have for both images. By drawing each of their keypoints in sequence, I can be sure that keypoint i on image A is keypoint i on image B.
I've also tried playing with the ndisp parameter, but it didn't help much.
I tried it for the following pair of images:
LeftImage
RightImage
got the following rectified pair:
RectifiedLeft
RectifiedRight
and finally, the following disparity map
DisparityMap
Which, as you can see, is quite bad. I've also tried the same pair of images with the following stereoRectifyUncalibrated example: http://programmingexamples.net/wiki/OpenCV/WishList/StereoRectifyUncalibrated and the SBM_Sample.cpp from opencv tutorial code samples to build the disparity map, and got a very similar result.
I'm using opencv 2.4
Thanks in advance!
Besides possible calibration problems, your images clearly lack some texture for the stereo block matching to work. This algorithm will see many ambiguities and too large disparities on flat (non-tetxured) parts.
Note however that the keypoints seem to match well, so even if the rectification output seems weird it is probably correct.
You can test your code against standard images from the Middlebury stereo page for sanity checks.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With