Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Problem with missing and unexpected keys while loading my model in Pytorch

I'm trying to load the model using this tutorial: https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference . Unfortunately I'm very beginner and I face some problems.

I have created checkpoint:

checkpoint = {'epoch': epochs, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),'loss': loss}
torch.save(checkpoint, 'checkpoint.pth')

Then I wrote class for my network and I wanted to load the file:

class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(9216, 4096)
        self.fc2 = nn.Linear(4096, 1000)
        self.fc3 = nn.Linear(1000, 102)

    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)
        x = log(F.softmax(x, dim=1))
        return x

Like that:

def load_checkpoint(filepath):
    checkpoint = torch.load(filepath)
    model = Network()
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    epoch = checkpoint['epoch']
    loss = checkpoint['loss']

model = load_checkpoint('checkpoint.pth')

I got this error (edited to show whole communicate):

RuntimeError: Error(s) in loading state_dict for Network:
    Missing key(s) in state_dict: "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". 
    Unexpected key(s) in state_dict: "features.0.weight", "features.0.bias", "features.3.weight", "features.3.bias", "features.6.weight", "features.6.bias", "features.8.weight", "features.8.bias", "features.10.weight", "features.10.bias", "classifier.fc1.weight", "classifier.fc1.bias", "classifier.fc2.weight", "classifier.fc2.bias", "classifier.fc3.weight", "classifier.fc3.bias". 

This is my model.state_dict().keys():

odict_keys(['features.0.weight', 'features.0.bias', 'features.3.weight', 
'features.3.bias', 'features.6.weight', 'features.6.bias', 
'features.8.weight', 'features.8.bias', 'features.10.weight', 
'features.10.bias', 'classifier.fc1.weight', 'classifier.fc1.bias', 
'classifier.fc2.weight', 'classifier.fc2.bias', 'classifier.fc3.weight', 
'classifier.fc3.bias'])

This is my model:

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)

((classifier): Sequential(
(fc1): Linear(in_features=9216, out_features=4096, bias=True)
(relu1): ReLU()
(fc2): Linear(in_features=4096, out_features=1000, bias=True)
(relu2): ReLU()
(fc3): Linear(in_features=1000, out_features=102, bias=True)
(output): LogSoftmax()
)
)

It's my first network ever and I'm blundering along. Thanks for steering me into right direction!

like image 805
Jakub Bielan Avatar asked Dec 23 '18 20:12

Jakub Bielan


People also ask

What is State_dict in PyTorch?

A state_dict is an integral entity if you are interested in saving or loading models from PyTorch. Because state_dict objects are Python dictionaries, they can be easily saved, updated, altered, and restored, adding a great deal of modularity to PyTorch models and optimizers.


1 Answers

So your Network is essentially the classifier part of AlexNet and you're looking to load pretrained AlexNet weights into it. The problem is that the keys in state_dict are "fully qualified", which means that if you look at your network as a tree of nested modules, a key is just a list of modules in each branch, joined with dots like grandparent.parent.child. You want to

  1. Keep only the tensors with name starting with "classifier."
  2. Remove the "classifier." part of keys

so try

model = Network()
loaded_dict = checkpoint['model_state_dict']
prefix = 'classifier.'
n_clip = len(prefix)
adapted_dict = {k[n_clip:]: v for k, v in loaded_dict.items()
                if k.startswith(prefix)}
model.load_state_dict(adapted_dict)
like image 100
Jatentaki Avatar answered Oct 07 '22 02:10

Jatentaki