Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Problem with 2D interpolation in SciPy, non-rectangular grid

I've been trying to use scipy.interpolate.bisplrep() and scipy.interpolate.interp2d() to find interpolants for data on my (218x135) 2D spherical-polar grid. To these I pass 2D arrays, X and Y, of the Cartesian positions of my grid nodes. I keep getting errors like the following (for linear interp. with interp2d):

"Warning: No more knots can be added because the additional knot would coincide with an old one. Probably cause: s too small or too large a weight to an inaccurate data point. (fp>s) kx,ky=1,1 nx,ny=4,5 m=29430 fp=1390609718.902140 s=0.000000"

I get a similar result for bivariate splines with the default value of the smoothing parameter s etc. My data are smooth. I've attached my code below in case I'm doing something obviously wrong.

Any ideas? Thanks! Kyle

class Field(object):
  Nr = 0
  Ntheta = 0
  grid = np.array([])

  def __init__(self, Nr, Ntheta, f):
    self.Nr = Nr
    self.Ntheta = Ntheta
    self.grid = np.empty([Nr, Ntheta])
    for i in range(Nr):
      for j in range(Ntheta):
        self.grid[i,j] = f[i*Ntheta + j]


def calculate_lines(filename):
  ri,ti,r,t,Br,Bt,Bphi,Bmag = np.loadtxt(filename, skiprows=3,\
    usecols=(1,2,3,4,5,6,7,9), unpack=True)
  Nr = int(max(ri)) + 1
  Ntheta = int(max(ti)) + 1

  ### Initialise coordinate grids ###
  X = np.empty([Nr, Ntheta])
  Y = np.empty([Nr, Ntheta])
  for i in range(Nr):
    for j in range(Ntheta):
      indx = i*Ntheta + j
      X[i,j] = r[indx]*sin(t[indx])
      Y[i,j] = r[indx]*cos(t[indx])

  ### Initialise field objects ###
  Bradial = Field(Nr=Nr, Ntheta=Ntheta, f=Br)

  ### Interpolate the fields ###
  intp_Br = interpolate.interp2d(X, Y, Bradial.grid, kind='linear')

  #rbf_0 = interpolate.Rbf(X,Y, Bradial.grid, epsilon=2)

  return
like image 759
Kyle Avatar asked Aug 19 '10 21:08

Kyle


1 Answers

Added 27Aug: Kyle followed this up on a scipy-user thread.

30Aug: @Kyle, it looks as though there's a mixup between Cartesion X,Y and polar Xnew,Ynew. See "polar" in the too-long notes below.

alt text

# griddata vs SmoothBivariateSpline
# http://stackoverflow.com/questions/3526514/
#   problem-with-2d-interpolation-in-scipy-non-rectangular-grid

# http://www.scipy.org/Cookbook/Matplotlib/Gridding_irregularly_spaced_data
# http://en.wikipedia.org/wiki/Natural_neighbor
# http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

from __future__ import division
import sys
import numpy as np
from scipy.interpolate import SmoothBivariateSpline  # $scipy/interpolate/fitpack2.py
from matplotlib.mlab import griddata

__date__ = "2010-10-08 Oct"  # plot diffs, ypow
    # "2010-09-13 Sep"  # smooth relative

def avminmax( X ):
    absx = np.abs( X[ - np.isnan(X) ])
    av = np.mean(absx)
    m, M = np.nanmin(X), np.nanmax(X)
    histo = np.histogram( X, bins=5, range=(m,M) ) [0]
    return "av %.2g  min %.2g  max %.2g  histo %s" % (av, m, M, histo)

def cosr( x, y ):
    return 10 * np.cos( np.hypot(x,y) / np.sqrt(2) * 2*np.pi * cycle )

def cosx( x, y ):
    return 10 * np.cos( x * 2*np.pi * cycle )

def dipole( x, y ):
    r = .1 + np.hypot( x, y )
    t = np.arctan2( y, x )
    return np.cos(t) / r**3

#...............................................................................
testfunc = cosx
Nx = Ny = 20  # interpolate random Nx x Ny points -> Newx x Newy grid
Newx = Newy = 100
cycle = 3
noise = 0
ypow = 2  # denser => smaller error
imclip = (-5., 5.)  # plot trierr, splineerr to same scale
kx = ky = 3
smooth = .01  # Spline s = smooth * z2sum, see note
    # s is a target for sum (Z() - spline())**2  ~ Ndata and Z**2;
    # smooth is relative, s absolute
    # s too small => interpolate/fitpack2.py:580: UserWarning: ier=988, junk out
    # grr error message once only per ipython session
seed = 1
plot = 0

exec "\n".join( sys.argv[1:] )  # run this.py N= ...
np.random.seed(seed)
np.set_printoptions( 1, threshold=100, suppress=True )  # .1f

print 80 * "-"
print "%s  Nx %d Ny %d -> Newx %d Newy %d  cycle %.2g noise %.2g  kx %d ky %d smooth %s" % (
    testfunc.__name__, Nx, Ny, Newx, Newy, cycle, noise, kx, ky, smooth)

#...............................................................................

    # interpolate X Y Z to xnew x ynew --
X, Y = np.random.uniform( size=(Nx*Ny, 2) ) .T
Y **= ypow
    # 1d xlin ylin -> 2d X Y Z, Ny x Nx --
    # xlin = np.linspace( 0, 1, Nx )
    # ylin = np.linspace( 0, 1, Ny )
    # X, Y = np.meshgrid( xlin, ylin )
Z = testfunc( X, Y )  # Ny x Nx
if noise:
    Z += np.random.normal( 0, noise, Z.shape )
# print "Z:\n", Z
z2sum = np.sum( Z**2 )

xnew = np.linspace( 0, 1, Newx )
ynew = np.linspace( 0, 1, Newy )
Zexact = testfunc( *np.meshgrid( xnew, ynew ))
if imclip is None:
    imclip = np.min(Zexact), np.max(Zexact)
xflat, yflat, zflat = X.flatten(), Y.flatten(), Z.flatten()

#...............................................................................
print "SmoothBivariateSpline:"
fit = SmoothBivariateSpline( xflat, yflat, zflat, kx=kx, ky=ky, s = smooth * z2sum )
Zspline = fit( xnew, ynew ) .T  # .T ??

splineerr = Zspline - Zexact
print "Zspline - Z:", avminmax(splineerr)
print "Zspline:    ", avminmax(Zspline)
print "Z:          ", avminmax(Zexact)
res = fit.get_residual()
print "residual %.0f  res/z2sum %.2g" % (res, res / z2sum)
# print "knots:", fit.get_knots()
# print "Zspline:", Zspline.shape, "\n", Zspline
print ""

#...............................................................................
print "griddata:"
Ztri = griddata( xflat, yflat, zflat, xnew, ynew )
        # 1d x y z -> 2d Ztri on meshgrid(xnew,ynew)

nmask = np.ma.count_masked(Ztri)
if nmask > 0:
    print "info: griddata: %d of %d points are masked, not interpolated" % (
        nmask, Ztri.size)
    Ztri = Ztri.data  # Nans outside convex hull
trierr = Ztri - Zexact
print "Ztri - Z:", avminmax(trierr)
print "Ztri:    ", avminmax(Ztri)
print "Z:       ", avminmax(Zexact)
print ""

#...............................................................................
if plot:
    import pylab as pl
    nplot = 2
    fig = pl.figure( figsize=(10, 10/nplot + .5) )
    pl.suptitle( "Interpolation error: griddata - %s, BivariateSpline - %s" % (
        testfunc.__name__, testfunc.__name__ ), fontsize=11 )

    def subplot( z, jplot, label ):
        ax = pl.subplot( 1, nplot, jplot )
        im = pl.imshow(
            np.clip( z, *imclip ),  # plot to same scale
            cmap=pl.cm.RdYlBu,
            interpolation="nearest" )
                # nearest: squares, else imshow interpolates too
                # todo: centre the pixels
        ny, nx = z.shape
        pl.scatter( X*nx, Y*ny, edgecolor="y", s=1 )  # for random XY
        pl.xlabel(label)
        return [ax, im]

    subplot( trierr, 1,
        "griddata, Delaunay triangulation + Natural neighbor: max %.2g" %
        np.nanmax(np.abs(trierr)) )

    ax, im = subplot( splineerr, 2,
        "SmoothBivariateSpline kx %d ky %d smooth %.3g: max %.2g" % (
        kx, ky, smooth, np.nanmax(np.abs(splineerr)) ))

    pl.subplots_adjust( .02, .01, .92, .98, .05, .05 )  # l b r t
    cax = pl.axes([.95, .05, .02, .9])  # l b w h
    pl.colorbar( im, cax=cax )  # -1.5 .. 9 ??
    if plot >= 2:
        pl.savefig( "tmp.png" )
    pl.show() 

Notes on 2d interpolation, BivariateSpline vs. griddata.

scipy.interpolate.*BivariateSpline and matplotlib.mlab.griddata both take 1d arrays as arguments:

Znew = griddata( X,Y,Z, Xnew,Ynew )
    # 1d X Y Z Xnew Ynew -> interpolated 2d Znew on meshgrid(Xnew,Ynew)
assert X.ndim == Y.ndim == Z.ndim == 1  and  len(X) == len(Y) == len(Z)

The inputs X,Y,Z describe a surface or cloud of points in 3-space: X,Y (or latitude,longitude or ...) points in a plane, and Z a surface or terrain above that. X,Y may fill most of the rectangle [Xmin .. Xmax] x [Ymin .. Ymax], or may be just a squiggly S or Y inside it. The Z surface may be smooth, or smooth + a bit of noise, or not smooth at all, rough volcanic mountains.

Xnew and Ynew are usually also 1d, describing a rectangular grid of |Xnew| x |Ynew| points where you want to interpolate or estimate Z.
Znew = griddata(...) returns a 2d array over this grid, np.meshgrid(Xnew,Ynew):

Znew[Xnew0,Ynew0], Znew[Xnew1,Ynew0], Znew[Xnew2,Ynew0] ...
Znew[Xnew0,Ynew1] ...
Znew[Xnew0,Ynew2] ...
...

Xnew,Ynew points far from any of the input X,Y s spell trouble. griddata checks this:

A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done).

("Convex hull" is the area inside an imaginary rubber band stretched around all the X,Y points.)

griddata works by first constructing a Delaunay triangulation of the input X,Y, then doing Natural neighbor interpolation. This is robust and quite fast.

BivariateSpline, though, can extrapolate, generating wild swings without warning. Furthermore, all the *Spline routines in Fitpack are very sensitive to smoothing parameter S. Dierckx's book (books.google isbn 019853440X p. 89) says:
if S is too small, the spline approximation is too wiggly and picks up too much noise (overfit);
if S is too large the spline will be too smooth and signal will be lost (underfit).

Interpolation of scattered data is hard, smoothing not easy, both together really hard. What should an interpolator do with big holes in XY, or with very noisy Z ? ("If you want to sell it, you're going to have to describe it.")

Yet more notes, fine print:

1d vs 2d: Some interpolators take X,Y,Z either 1d or 2d. Others take 1d only, so flatten before interpolating:

Xmesh, Ymesh = np.meshgrid( np.linspace(0,1,Nx), np.linspace(0,1,Ny) )
Z = f( Xmesh, Ymesh )  # Nx x Ny
Znew = griddata( Xmesh.flatten(), Ymesh.flatten(), Z.flatten(), Xnew, Ynew )

On masked arrays: matplotlib handles them just fine, plotting only unmasked / non-NaN points. But I wouldn't bet that that a bozo numpy/scipy functions would work at all. Check for interpolation outside the convex hull of X,Y like this:

Znew = griddata(...)
nmask = np.ma.count_masked(Znew)
if nmask > 0:
    print "info: griddata: %d of %d points are masked, not interpolated" % (
        nmask, Znew.size)
    # Znew = Znew.data  # array with NaNs

On polar coordinates: X,Y and Xnew,Ynew should be in the same space, both Cartesion, or both in [rmin .. rmax] x [tmin .. tmax].
To plot (r, theta, z) points in 3d:

from mpl_toolkits.mplot3d import Axes3D
Znew = griddata( R,T,Z, Rnew,Tnew )
ax = Axes3D(fig)
ax.plot_surface( Rnew * np.cos(Tnew), Rnew * np.sin(Tnew), Znew )

See also (haven't tried this):

ax = subplot(1,1,1, projection="polar", aspect=1.)
ax.pcolormesh(theta, r, Z)


Two tips for the wary programmer:

check for outliers, or funny scaling:

def minavmax( X ):
    m = np.nanmin(X)
    M = np.nanmax(X)
    av = np.mean( X[ - np.isnan(X) ])  # masked ?
    histo = np.histogram( X, bins=5, range=(m,M) ) [0]
    return "min %.2g  av %.2g  max %.2g  histo %s" % (m, av, M, histo)

for nm, x in zip( "X Y Z  Xnew Ynew Znew".split(),
                (X,Y,Z, Xnew,Ynew,Znew) ):
    print nm, minavmax(x)

check interpolation with simple data:

interpolate( X,Y,Z, X,Y )  -- interpolate at the same points
interpolate( X,Y, np.ones(len(X)), Xnew,Ynew )  -- constant 1 ?
like image 64
denis Avatar answered Nov 05 '22 12:11

denis