Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Predict function for heckman model

Tags:

r

I use the example from the sampleSelection package

## Greene( 2003 ): example 22.8, page 786
    data( Mroz87 )
    Mroz87$kids  <- ( Mroz87$kids5 + Mroz87$kids618 > 0 )
    # Two-step estimation
    test1  = heckit( lfp ~ age + I( age^2 ) + faminc + kids + educ,
                     wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) 
    # ML estimation
    test2 =  selection( lfp ~ age + I( age^2 ) + faminc + kids + educ,
                        wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) 
    pr2 <- predict(test2,Mroz87)
    pr1 <- predict(test1,Mroz87)

My problem is that the predict function does not work. I get this error:

    Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "c('selection', 'maxLik', 'maxim', 'list')"

The predict function works for many models so I wonder why I get an error for heckman regression models.

-----------UPDATE----------- I made some progress but I still need your help. I build an original heckman model for comparsion:

data( Mroz87 )
Mroz87$kids  <- ( Mroz87$kids5 + Mroz87$kids618 > 0 )
test1  = heckit( lfp ~ age + I( age^2 ) + faminc + kids + educ,
                 wage ~ exper + I( exper^2 ) + educ + city, Mroz87[1:600,] ) 

After that I start building it on my own. Heckman model requires a selection equation:

zi* = wi γ + ui
where zi =1 if zi* >0  and zi = 0 if zi* <=0
after you calculate yi = xi*beta +ei ONLY for the cases where zi*>0

I build the probit model first:

library(MASS)
#probit1 = probit(lfp ~ age + I( age^2 ) + faminc + kids + educ, Mroz87, x = TRUE, print.level = print.level -      1, iterlim = 30)
myprobit <- glm(lfp ~ age + I( age^2 ) + faminc + kids + educ, family = binomial(link = "probit"), 
                data = Mroz87[1:600,])
summary(myprobit)

The model is exactly the same just as with the heckit command.

Then I build a lm model:

#get predictions for the variables (the data is not needed but I specify it anyway)
selectvar <- predict(myprobit,data = Mroz87[1:600,])
#bind the prediction to the table (I build a new one in my case)
newdata = cbind(Mroz87[1:600,],selectvar)
#Build an lm model for the subset where zi>0
lm1 = lm(wage ~ exper + I( exper^2 ) + educ + city , newdata, subset = selectvar > 0)
summary(lm1)

My issue now is that the lm model does not much the one created by heckit. I have no idea why. Any ideas?

like image 660
Michael Avatar asked Oct 05 '22 13:10

Michael


1 Answers

Implementation

Here is an implementation of the predict.selection function -- it produces 4 different types of predictions (which are explained here):

library(Formula)
library(sampleSelection)
predict.selection = function(objSelection, dfPred, 
                                 type = c('link', 'prob', 'cond', 'uncond')) {

  # construct the Formula object
  tempS = evalq(objSelection$call$selection)
  tempO = evalq(objSelection$call$outcome)

  FormHeck = as.Formula(paste0(tempO[2], '|', tempS[2], '~', tempO[3], '|', tempS[3]))

  # regressor matrix for the selection equation
  mXSelection = model.matrix(FormHeck, data = dfPred, rhs = 2)

  # regressor matrix for the outcome equation
  mXOutcome = model.matrix(FormHeck, data = dfPred, rhs = 1)

  # indices of the various parameters in selectionObject$estimate
  vIndexBetaS = objSelection$param$index$betaS
  vIndexBetaO = objSelection$param$index$betaO
  vIndexErr = objSelection$param$index$errTerms

  # get the estimates
  vBetaS = objSelection$estimate[vIndexBetaS]
  vBetaO = objSelection$estimate[vIndexBetaO]

  dLambda = objSelection$estimate[vIndexErr['rho']]*
    objSelection$estimate[vIndexErr['sigma']]

  # depending on the type of prediction requested, return
  # TODO allow the return of multiple prediction types
  pred = switch(type, 
         link = mXSelection %*% vBetaS,
         prob = pnorm(mXSelection %*% vBetaS),
         uncond = mXOutcome %*% vBetaO,
         cond = mXOutcome %*% vBetaO + 
           dnorm(temp <- mXSelection %*% vBetaS)/pnorm(temp) * dLambda)
  return(pred)
}

Test

Suppose you estimate the following Heckman sample selection model using MLE:

data(Mroz87)

# define a new variable
Mroz87$kids  = (Mroz87$kids5 + Mroz87$kids618 > 0)

# create the estimation sample
Mroz87Est = Mroz87[1:600, ]

# create the hold out sample
Mroz87Holdout = Mroz87[601:nrow(Mroz87), ]

# estimate the model using MLE
heckML =  selection(selection = lfp ~ age + I(age^2) + faminc + kids + educ,
                    outcome = wage ~ exper + I(exper^2) + educ + city, data = Mroz87Est) 
summary(heckML)  

The different types of predictions are computed as below:

vProb = predict(objSelection = heckML, dfPred = Mroz87Holdout, type = 'prob')
vLink = predict(objSelection = heckML, dfPred = Mroz87Holdout, type = 'link')
vCond = predict(objSelection = heckML, dfPred = Mroz87Holdout, type = 'cond')
vUncond = predict(objSelection = heckML, dfPred = Mroz87Holdout, type = 'uncond')

You can verify these computation on a platform that produces these outputs, such as Stata.

like image 120
tchakravarty Avatar answered Oct 10 '22 01:10

tchakravarty