I'm trying to compute the cosine of 4203708359 radians in C#:
var x = (double)4203708359;
var c = Math.Cos(x);
(4203708359 can be exactly represented in double precision.)
I'm getting
c = -0.57977754519440394
Windows' calculator gives
c = -0.579777545198813380788467070278
PHP's cos(double)
function (which internally just uses cos(double)
from the C standard library) on Linux gives:
c = -0.57977754519881
C's cos(double)
function in a simple C program compiled with Visual Studio 2017 gives
c = -0.57977754519881342
Here is the definition of Math.cos()
in C#: https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Math.cs#L57-L58
It appears to be a built-in function. I didn't dig (yet) in the C# compiler to check what this effectively compiles to but this is probably the next step.
In the meantime:
Why is the precision so poor in my C# example, and what can I do about it?
Is it simply that the cosine implementation in the C# compiler deals poorly with large integer inputs?
Edit 1: Wolfram Mathematica 11.0:
In[1] := N[Cos[4203708359], 50]
Out[1] := -0.57977754519881338078846707027800171954257546099993
Edit 2: I do need that level precision, and I'm ready to go pretty far in order to obtain it. I'd be happy to use an arbitrary precision library if there exists a good one that supports cosine (my efforts haven't led to one so far).
Edit 3: I posted the question on coreclr's issue tracker: https://github.com/dotnet/coreclr/issues/12737
I think I might know the answer. I'm pretty sure the sin/cos libraries don't take arbitrarily large numbers and calculate the sin/cos of them - they instead reduce them down to low numbers (between 0-2xpi?) and calculate them there. I mean, cos(x) = cos(x + 2xpi) = cos(x + 4xpi) = ...
Problem is, how is the program supposed to reduce your 10-digit number down? Realistically, it should figure out how many times it needs to multiply (2xpi) to get a value just below your number, then subtract that out. In your case, that's about 670 million.
So it's multiplying (2xpi) by this 9 digit value - so it's effectively losing 9 digits worth of significance from the math library's version of pi.
I ended up writing a little function to test what was going on:
private double reduceDown(double start)
{
decimal startDec = (decimal)start;
decimal pi = decimal.Parse("3.1415926535897932384626433832795");
decimal tau = pi * 2;
int num = (int)(startDec / tau);
decimal x = startDec - (num * tau);
double retVal;
double.TryParse(x.ToString(), out retVal);
return retVal;
//return start - (num * tau);
}
All this is doing is using decimal data type as a way of reducing down the value without losing digits of precision from pi - it still returns back a double. When I call it with a modification of your code:
var x = (double)4203708359;
var c = Math.Cos(x);
double y = reduceDown(x);
double c2 = Math.Cos(y);
MessageBox.Show(c.ToString() + Environment.NewLine + c2);
return;
... sure enough, the second one is accurate.
So my advice is - if you really need radians that high, and you really need the accuracy? Do something like that function above, and reduce the number down on your end in a way that you don't lose digits of precision.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With