given my current position (lat,long) I want to quickly find the nearest neighbor in a points of interest problem. Thus I intend to use an R-Tree database, which allows for quick lookup. However, first the database must be populated - of course. Therefore, I need to determine the rectangular regions that covers the area, where each region contains one point of interest.
My question is how do I preprocess the data, i.e. how do I subdivide the area into these rectangular sub-regions? (I want rectangular regions because they are easily added to the RTree - in contrast to more general Voronoi regions).
/John
Edit: The below approach works, but ignores the critical feature of R-trees -- that The splitting behavior of R-tree nodes is well defined, and maintains a balanced tree (through B-tree-like properties). So in fact, all you have to do is:
I think the method below is ok for finding your initial seed rectangles; but you don't want to populate your whole R-tree that way. Doing the splits and rebalancing all the time can be a bit expensive, so you will probably want to do a decent chunk of the work with the KD approach below; just not all of the work.
The KD approach: enclose everything in a rectangle.
If the number of points in the rectangle is > threshold, sweep in direction D until you cover half the points.
Divide into rectangles left and right (or above and below) the splitting point).
Call the same procedure recursively on the new rectangles, with the next direction (if you were going left to right, you will now go top to bottom, and vice versa).
The advantage this has over the divide-into-squares approach offered by another poster is that it accommodates skewed point distributions better.
Oracle Spatial Cartridge documentation describes tessellation algorithm that can do what you want. In short:
Result should be something like this:
alt text http://download-uk.oracle.com/docs/cd/A64702_01/doc/cartridg.805/a53264/sdo_ina5.gif
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With