I have the following query
SELECT translation.id
FROM "TRANSLATION" translation
INNER JOIN "UNIT" unit
ON translation.fk_id_unit = unit.id
INNER JOIN "DOCUMENT" document
ON unit.fk_id_document = document.id
WHERE document.fk_id_job = 3665
ORDER BY translation.id asc
LIMIT 50
It runs for dreadful 110 seconds.
The table sizes:
+----------------+-------------+
| Table | Records |
+----------------+-------------+
| TRANSLATION | 6,906,679 |
| UNIT | 6,906,679 |
| DOCUMENT | 42,321 |
+----------------+-------------+
However, when I change the LIMIT
parameter from 50 to 1000, the query finishes in 2 seconds.
Here is the query plan for the slow one
Limit (cost=0.00..146071.52 rows=50 width=8) (actual time=111916.180..111917.626 rows=50 loops=1)
-> Nested Loop (cost=0.00..50748166.14 rows=17371 width=8) (actual time=111916.179..111917.624 rows=50 loops=1)
Join Filter: (unit.fk_id_document = document.id)
-> Nested Loop (cost=0.00..39720545.91 rows=5655119 width=16) (actual time=0.051..15292.943 rows=5624514 loops=1)
-> Index Scan using "TRANSLATION_pkey" on "TRANSLATION" translation (cost=0.00..7052806.78 rows=5655119 width=16) (actual time=0.039..1887.757 rows=5624514 loops=1)
-> Index Scan using "UNIT_pkey" on "UNIT" unit (cost=0.00..5.76 rows=1 width=16) (actual time=0.002..0.002 rows=1 loops=5624514)
Index Cond: (unit.id = translation.fk_id_translation_unit)
-> Materialize (cost=0.00..138.51 rows=130 width=8) (actual time=0.000..0.006 rows=119 loops=5624514)
-> Index Scan using "DOCUMENT_idx_job" on "DOCUMENT" document (cost=0.00..137.86 rows=130 width=8) (actual time=0.025..0.184 rows=119 loops=1)
Index Cond: (fk_id_job = 3665)
and for the fast one
Limit (cost=523198.17..523200.67 rows=1000 width=8) (actual time=2274.830..2274.988 rows=1000 loops=1)
-> Sort (cost=523198.17..523241.60 rows=17371 width=8) (actual time=2274.829..2274.895 rows=1000 loops=1)
Sort Key: translation.id
Sort Method: top-N heapsort Memory: 95kB
-> Nested Loop (cost=139.48..522245.74 rows=17371 width=8) (actual time=0.095..2252.710 rows=97915 loops=1)
-> Hash Join (cost=139.48..420861.93 rows=17551 width=8) (actual time=0.079..2005.238 rows=97915 loops=1)
Hash Cond: (unit.fk_id_document = document.id)
-> Seq Scan on "UNIT" unit (cost=0.00..399120.41 rows=5713741 width=16) (actual time=0.008..1200.547 rows=6908070 loops=1)
-> Hash (cost=137.86..137.86 rows=130 width=8) (actual time=0.065..0.065 rows=119 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 5kB
-> Index Scan using "DOCUMENT_idx_job" on "DOCUMENT" document (cost=0.00..137.86 rows=130 width=8) (actual time=0.009..0.041 rows=119 loops=1)
Index Cond: (fk_id_job = 3665)
-> Index Scan using "TRANSLATION_idx_unit" on "TRANSLATION" translation (cost=0.00..5.76 rows=1 width=16) (actual time=0.002..0.002 rows=1 loops=97915)
Index Cond: (translation.fk_id_translation_unit = unit.id)
Apparently the execution plans are very different and the second one results in a query 50 times faster.
I have indexes on all the fields involved in the query and I ran ANALYZE
on all tables just before running the queries.
Can somebody see what is wrong with the first query?
UPDATE: Table definitions
CREATE TABLE "public"."TRANSLATION" (
"id" BIGINT NOT NULL,
"fk_id_translation_unit" BIGINT NOT NULL,
"translation" TEXT NOT NULL,
"fk_id_language" INTEGER NOT NULL,
"relevance" INTEGER,
CONSTRAINT "TRANSLATION_pkey" PRIMARY KEY("id"),
CONSTRAINT "TRANSLATION_fk" FOREIGN KEY ("fk_id_translation_unit")
REFERENCES "public"."UNIT"("id")
ON DELETE CASCADE
ON UPDATE NO ACTION
DEFERRABLE
INITIALLY DEFERRED,
CONSTRAINT "TRANSLATION_fk1" FOREIGN KEY ("fk_id_language")
REFERENCES "public"."LANGUAGE"("id")
ON DELETE NO ACTION
ON UPDATE NO ACTION
NOT DEFERRABLE
) WITHOUT OIDS;
CREATE INDEX "TRANSLATION_idx_unit" ON "public"."TRANSLATION"
USING btree ("fk_id_translation_unit");
CREATE INDEX "TRANSLATION_language_idx" ON "public"."TRANSLATION"
USING hash ("translation");
CREATE TABLE "public"."UNIT" (
"id" BIGINT NOT NULL,
"text" TEXT NOT NULL,
"fk_id_language" INTEGER NOT NULL,
"fk_id_document" BIGINT NOT NULL,
"word_count" INTEGER DEFAULT 0,
CONSTRAINT "UNIT_pkey" PRIMARY KEY("id"),
CONSTRAINT "UNIT_fk" FOREIGN KEY ("fk_id_document")
REFERENCES "public"."DOCUMENT"("id")
ON DELETE CASCADE
ON UPDATE NO ACTION
NOT DEFERRABLE,
CONSTRAINT "UNIT_fk1" FOREIGN KEY ("fk_id_language")
REFERENCES "public"."LANGUAGE"("id")
ON DELETE NO ACTION
ON UPDATE NO ACTION
NOT DEFERRABLE
) WITHOUT OIDS;
CREATE INDEX "UNIT_idx_document" ON "public"."UNIT"
USING btree ("fk_id_document");
CREATE INDEX "UNIT_text_idx" ON "public"."UNIT"
USING hash ("text");
CREATE TABLE "public"."DOCUMENT" (
"id" BIGINT NOT NULL,
"fk_id_job" BIGINT,
CONSTRAINT "DOCUMENT_pkey" PRIMARY KEY("id"),
CONSTRAINT "DOCUMENT_fk" FOREIGN KEY ("fk_id_job")
REFERENCES "public"."JOB"("id")
ON DELETE SET NULL
ON UPDATE NO ACTION
NOT DEFERRABLE
) WITHOUT OIDS;
UPDATE: Database parameters
shared_buffers = 2048MB
effective_cache_size = 4096MB
work_mem = 32MB
Total memory: 32GB
CPU: Intel Xeon X3470 @ 2.93 GHz, 8MB cache
The PostgreSQL LIMIT clause is used to get a subset of rows generated by a query. It is an optional clause of the SELECT statement. The LIMIT clause can be used with the OFFSET clause to skip a specific number of rows before returning the query for the LIMIT clause.
Yes the number of columns will - indirectly - influence the performance. The data in the columns will also affect the speed.
In order to determine a reasonable (not necessarily optimal) query plan in a reasonable amount of time, PostgreSQL uses a Genetic Query Optimizer (see Chapter 62) when the number of joins exceeds a threshold (see geqo_threshold).
If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL argument. OFFSET says to skip that many rows before beginning to return rows.
Here is an interesting part of the ANALYZE official documentation.
For large tables, ANALYZE takes a random sample of the table contents, rather than examining every row. [...] The extent of analysis can be controlled by adjusting the default_statistics_target configuration variable, or on a column-by-column basis by setting the per-column statistics target with ALTER TABLE ... ALTER COLUMN ... SET STATISTICS.
Apparently it is a common way to improve bad query plan. Analyze will be a bit slower, but query plan can be better.
ALTER TABLE
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With